

Femtet Seminar

Understanding Magnetic Analysis

1. Overview

2. Functions and Settings

3. Points to Note

Table of Contents

1. Overview

- Three Solvers of Electromagnetic Fields
- Analysis Types
- Static Analysis
- Harmonic Analysis
- Transient Analysis
- 2. Functions and Settings
- 3. Points to Note

Solvers of Electromagnetic Fields Murata Software

3 types of solvers are available

Electromagnetic Field	
Electric Analysis	Coulomb
Magnetic Analysis	Gauss/Luvens
Electromagnetic Analysis	Hertz

Solver Type	Frequencies to Solve
Electric	Constant Current, Voltage
Magnetic	Low Frequencies (~1MHz)
Electromagnetic	High Frequencies (1MHz \sim GHz order)

3 analysis types are available for magnetic analysis.

Static	Harmonic	Transient
Static Magnetic Field	• AC Magnetic Field Distribution	Magnetic Distribution on Time
Distribution	• Inductance with Skin Effect	Axis
Inductance	Taken into Account	Induced Current
• Electromagnetic Force, etc.	• Induced Current, Induced Heat	• Motor

Static Analysis

🛑 Murata Software

The distribution of static magnetic field generated by direct current or magnet is analyzed. The inductance and electromagnetic force are calculated as well. The materials with nonlinear BH curve can be analyzed too.

Distribution of Current Density (Static Analysis)

Freq.=0 (DC)
$$\nabla \times \frac{1}{\mu} (\nabla \times A) = J_0$$

is solved.

A: magnetic vector potential (magnetic flux $B=\nabla \times A$) Φ : potential μ : permeability σ : conductivity J0: forced current density

Harmonic Analysis

The AC magnetic field distribution (dynamic magnetic field distribution) is calculated, which is generated by alternating current.

It is possible to take the induced current and the skin effect into account.

The inductance is also calculated.

Calculation of the induction heating (IH) is also possible by coupling with thermal analysis.

It is not possible, however, to analyze the materials with nonlinear BH curves.

Current Density Distribution (10kHz)

0<Frequency (AC) $\nabla \times \frac{1}{\mu} (\nabla \times A) + \sigma (j\omega A + \nabla \phi) = J_0$

is solved.

A: magnetic vector potential (magnetic flux $B=\nabla \times A$) Φ : potential μ : permeability σ : conductivity J0: forced current density

Transient Analysis

Transient analysis is optional.

The magnetic field distribution (dynamic magnetic field distribution) of time axis is calculated,

which is generated by the DC/AC/arbitrary-waveform current, and magnet.

It is possible to take the induced current and the skin effect into account.

It can handle the materials with nonlinear BH curves.

Coupled analysis with an external circuit is possible, which enables the motor analysis.

Analysis on Time Axis

$$\nabla \times \frac{1}{\mu} (\nabla \times A) + \sigma \left(\frac{\partial A}{\partial t} + \nabla \phi \right) = J_0$$

is solved over time steps.

A: magnetic vector potential (magnetic flux $B=\nabla \times A$) Φ : potential μ : permeability σ : conductivity J0: forced current density

Magnetic Flux Density

Table of Contents

1. Overview

2. Functions and Settings

- Analysis Flow
- Analysis Condition
- Material Property
- Boundary Condition
- Results
- 3. Points to Note

Analysis Flows

- 3D Model Creation
- Analysis Condition: Analysis type, Mesh size, etc.
- Body Attribute: Magnetization direction, etc.
- Material Property: Relative permeability, Conductivity, Iron loss, etc.
- Boundary Condition: Electric wall, Magnetic wall, Open boundary, etc.

Analysis Conditions: Rotating Machine

Setting of transient analysis of rotating machine.

otational Movement				
	Location of Slide I	Mesh (for gap of	rotor and sta	tor)
Constant Velocity	🗸 Automatic d	alculation		
Number of	Rotor Type			
Rotations 1.0 [r/min] *Negative value for reverse rotation	Inner Rot Outer Rot	tor		
Rotation Position [deg]				
O Motion Equation Coupling	Gap Radius		-3	
ocation of Potation Avic (arbitrary point on the avic)	Inner	0.0		
	Outer	0.0	X10	[m]
-3	Center	0.0000		
Y 0.0 X10 [m]				
Z 0.0				
Gap Туре				
Radial Gap				
 Axial Gap (available only for 3D analysis) 				
The Number of Slide Mesh Divisions	Division Size of S	lide Mesh in the J	Axis Directior	
Circumferential [1.0 [deg]	 Automatically 	set the general n	nesh size	
Rotational Quantity 1 [Mesh]	O Divide at unifor specified mest	orm interval with n size	0.0	[mm]
per Step				

Setting of coupling with an external circuit for transient analysis.

Analysis Conditions:

External Circuit

) Murata Software

Analysis Conditions: External Magnetic Field

Setting to solve the external magnetic field applied to the analysis model. In the static and transient analysis, the constant magnetic field is applied. In the harmonic analysis, the fluctuating magnetic field is applied.

Electromotive Force of Coil

Material Property

3 types of material properties are available.

Electric Conductivity				Electric Conductivity Permeability
Conductivity Type	Permeability			Iron Loss
Insulator				101 L035
Onductor	Material Type	Magnetization Charact	eristic Type Anisotropy	
Semiconductor	Soft Magnetic Material	Inear (Constant)	Iron Loss	
Multilayer Electrode	Permanent	B-H Curve	- Iron Loss Calculation Type	
Perfect Conductor	Magnet		Joule Loss Only (calculat from current distribution	ion)
Electric Conductivity	-Relative nermeability		Iron loss table	
7	-	0	Iron loss empirical formula	la
4.255 X10 [S/m]	1.0 X10		Add Table	
			Frequency X1	0 [Hz] Add
	tanD			
		0	Edit/Check Table	
	0.0 X1	0		Edit
			Frequency	• [Hz]
	Use the tensor perme	ability [Hertz]		Delete
	Use the minor-loop pe to analyze superimpos	ermeability ed DC characteristic		Graph

Material Property Setting for Magnetic Materials

Depending on the type of magnetic material, the setting varies.

[Soft Magnetic Material] Having low coercive force and large permeability. B: Magnetic Flux (Tesla) -Iron D: Residual Magnetic -Silicon steel Flux Density В -Nickel Permeability=B/H -Perm alloy -Soft ferrite, etc. 0 H: Magnetic Field (A/m) E: Coercive Force [Hard Magnetic Material (Permanent Magnet)] Having high coercive force. -Neodymium G: Residual Magnetic Flux Density F: Saturation Magnetic -Alnico Flux Density -Ferrite (hard ferrite)

-Samarium cobalt, etc.

B-H Curve (Magnetic Hysteresis Curve)

🕑 Murata Software

Material Property Setting: Soft Magnetic Material

Select [Soft Magnetic Material] on the Permeability tab.

Permeability

Enter either (1) or (2) below.

(1) If you want to calculate in short time: Enter [Relative permeability].

(2) If you want to calculate with accuracy:

Enter B-H curve data (usually, of the first quadrant) in the table.

The B-H curve data can be obtained on the websites of the material suppliers.

Material Property Setting: Permanent Magnet

Select [Permanent magnet] on the Permeability tab. Enter as follow on the Magnet Tab.

(1) If you want to calculate in short time:

Enter [Magnetization Strength] and [Relative Permeability].

(2) If you want to calculate in short time:

Enter B-H curve data (usually, of the second and third quadrant) in the table.

The B-H curve data can be obtained on the site of material supplier.

Material Property Setting: Iron Loss

There are two methods to set the iron loss.

1. Iron Loss Table

Enter the magnetic flux density and the loss density for each frequency in the table.

The data can be obtained from the material suppliers' websites.

Iron Loss

Definition type of iron loss characteristics

Joule Loss Only

Iron loss table

Add Table

Frequency

(calculation from current distribution)

Iron loss empirical formula

100

🛑 Murata Software

Calculation method with reference to mag

Amplitude (Variation Width/2)

Frequency Analysis (FFT)

Maximum Value

Add

▲ ▼

[Hz]

0

X10

Material Property Setting: Iron Loss

2. Iron Loss Empirical Formula

Enter the coefficients of the iron loss empirical formula. $Wh = Kh B^{\alpha} f^{\beta}$

 $We = Ke B^{\gamma} f^{\delta}$

where:

Wh: Hysteresis loss density [W/m³]We: Joule loss density [W/m³]B: Magnetic flux density [T]f: Frequency [Hz]

Definition type of iron loss characteristics	Calculation method with reference to magnetic flux density
Joule Loss Only	Calculation method with reference to magnetic hux density
(calculation from current	Amplitude (Variation Width/2)
	Maximum Value
	Frequency Analysis (FFT)
Hysteresis Loss	
Kh 10	
Alpha 16	
Beta 1.0	
Joule Loss	
○ Calculate Joule loss from current distri	bution
Calculate Joule loss from empiric form	
Ke 0.1	
γ 2.0	
σ 20	
2.0	

Material Property Setting: Iron Loss

Calculation Method and Fundamental Frequency

The calculation method and the fundamental frequency are a common setting to the iron loss table and the empirical formula.

Iron Loss		
Definition type of iron loss characteristics	Calculation method with reference to magnetic flux density	Fundamental Frequency (common in the analysis model)
(calculation from current	Amplitude (Variation Width/2)	Frequency of Power
(istribution) Iron loss table	O Maximum Value	O Specify Frequency
◯ Iron loss empirical formula	○ Frequency Analysis (FFT)	Frequency 0.0 [Hz]
Add Table		Calculate from the number of poles and rotations
Frequency 100 X10 [I	Hz] Add	The Number of Poles 0
		Number of Rotations 0.0 [r/min]
Edit/Check Table		

[Calculation Method of Iron Loss] If the input current is sine wave, select [Amplitude].

If the input current is triangular or square wave, and harmonic loss is to be taken into account, select [Frequency analysis (FFT)]. *Transient analysis is required. [Fundamental Frequency] Basically, select [Frequency of Power]. If the waveform is arbitrary, the frequency is determined by the time range of the table.

In the case of DC power or if you want to specify the frequency yourself, select [Specify Frequency] or [Calculate from the number of poles and rotations]

Body Attribute

Direction

Body Attribute:

Body Attribute: Current

Value and direction of current are specified.

Current Waveform Value Direction X10 ▲ ▼ Loop Coil/Magnetic Field Direction ODC [A] Current 0.5 (Amplitude) ○ Specify Inflow Face • AC (cos wave) ▲ ▼ 3 O Specify Inflow/Outflow faces Frequency 50 X10 [Hz] OUser to Define Specify Inflow/Outflow Faces (In the Air Box) *Inflow/outflow faces are positioned in the air box Phase 0 [deg] Specify Boundary Conditions External Circuit Coupling Magnetic Field Vector Coil Name on the Circuit Turns 100 [Turn X 0.0 none Y 0.0 Options Z 1 Distribute the current uniformly (Consider to opt for it when the number of turns is more than 1) Induced Current Circuitry of Induced Current Yes Open ○ No Short

<Direction Setting>

•Loop Coil Specify magnetic field vector.

•Others Specify inflow/outflow faces.

Body Attribute: Current

There is a setting rule for the location of inflow/outflow faces.

It is allowed to place the inflow/outflow faces inside the air.

The inflow/outflow faces must be extended to the outside of the air body. The outer boundary condition must be electric wall. (Inflow/outflow faces are electrically connected)

) Murata Software

*This is not the case for the loop coil.

Coil of Many Turns

Many turns make the body form complicated and calculation time becomes longer. Femtet has a function to make such coil a "bulk coil" where the turns are considered to be one lump.

Murata Software

Boundary Conditions

Classification of Boundary Conditions

Boundary Condition Types

6 types of boundary conditions are available for the magnetic analysis.

Electric		
Boundary Condition Typ	e	
• Electric wall	Surface impedance	O Multilayer Electrode
Open boundary	○ Port	C Electric Resistance
O Magnetic wall	Integral path	
O Plating wall	O Lumped constant	

mmetry/Continuity	
Symmetry	
Reflective	
Periodic	
Continuity	
Discontinuous	

Electric Wall Magnetic field vectors run in parallel **Open Boundary** Magnetic field expands naturally Magnetic Wall Magnetic field vectors cross vertically Integral Path Electromotive force is calculated Reflective Symmetric model Port(*) Input and output of electromagnetic waves (*)Port is rarely used. Conditions except Port are explained on the following pages.

🛑 Murata Software

Boundary Condition: Electric Wall and Magnetic Wall

The magnetic field runs in parallel to the electric wall, and normal to the magnetic wall. The magnetic wall is used mainly when the external magnetic field is applied. The electric wall represents the analysis domain enclosed by conductor. The electric wall is set by default in the magnetic analysis.

Boundary Condition: Open Boundary

The magnetic field is expanding beyond the analysis domain.

The open boundary is used for the directivity analysis.

Analysis of Magnetic Field Directivity (near-field radiation)

_	
X 0.0	3
Y 0.0 X10	 [m]
	E
Z 0.0	
ne solver	
ength] Piezoelectric Analysis Setting	
	X 0.0 Y 0.0 X10 Z 0.0 tre solver Hength] Piezoelectric Analysis Setting

<Note>

- The coordinates of origin must be specified in the analysis condition setting.
- The open boundary can be set to spherical surface only.

Boundary Condition: Integral Path

Induced electromotive is calculated in the harmonic analysis.

This setting is for analyzing electromotive or wireless power transmission.

Real pa	irt	Imaginary	y part	
Integral 3.3	794e-5		0.335	

Electromotive of Receiver Coil (NFC)

Boundary Condition: Reflective

🛑 Murata Software

Boundary condition setting on the face of symmetry Air Symmetry/Continuity Symmetry Coil Reflective Periodic 全体寸法 : 80 mm 4/4Symmetric Model Continuity Discontinuous Face of Symmetry [Note] Face of symmetry is treated as the electric wall. Reflective can be used only when the magnetic field runs vertically. 全体寸法 : 60 mm

Results: Field

Field shows the electromagnetic field visually.

Vectors of Magnetic Flux Density

- -Vector display of magnetic field, magnetic flux density, and current density
- -Contour display of scalar and vector quantities of, such as, loss density
- -Graph
- -Animation

Animation

Results: Table

Numerical results are displayed on the table.

Table				×
Magnotic ono	ray [1] O factor Loss [M] Port curr	opt [A] Impedance (obm) Potential difference M across the posts Industance [H] Counting coefficient FEM Info		
iviagnetic ene				
	Value			
Coil 1	Coil Coil_InAuto Coil_OutAuto			
	2.3946-7			
		Magnetic Analy V 0: 5.000e+04[Hz] V Display Options Export Close	ヘルプ	

Results: Directivity

🛑 Murata Software

1. Overview

- 2. Functions and Settings
- 3. Points to Note
 - Calculation Accuracy and Speed
 - Linear and Nonlinear Analysis
 - Harmonic Analysis
 - Loss and Magnetic Field-Thermal Coupled Analysis
 - Floating Capacitance Calculation by Electric Filed Analysis

Calculation Accuracy and Speed ^(D) Murata Software

Mesh

Air Size

Symmetric Model

Finite element method is one of the prominent numerical methods used in a wide range of fields such as structural analysis, electromagnetic field analysis, and fluid analysis.

It subdivides an analysis domain into smaller parts called finite elements.

Subdivision of Analysis Domain

Element Type

The 1st-order and 2nd-order elements are selectable on the Mesh tab.

(Unknown Number)

Mesh Size

🌔 Murata Software

By applying the finer meshes, the calculation will be more accurate and gradually approaches the true value. The finer meshes are needed for where the magnetic field changes drastically. For where the magnetic field changes mildly, the less-fine meshes reduce the calculation time.

Mesh Size Setting

General Mesh Size

Partial Mesh Size Setting on the Arbitrary Bodies, Face, Edges, Vertices

Air body must be present even where the magnetic field is sufficiently small.

Automatic ambient air is created is ON by default (scale of 3)

Symmetric Model

If the analysis model has symmetricity in its form or attributes, the model can be segmented on the face of symmetry for analysis.

Symmetric model reduces the number of elements, calculation time, and memory consumption.

2D Axisymmetric Model

If the analysis model is axisymmetric in its form or attributes, 2D axisymmetric analysis will reduce the calculation time.

Linear and Nonlinear Analysis

Nonlinear Magnetic Analysis

Linear and Nonlinear Analysis ^(D) Murata Software

• Single calculation solves the equation.

Calculation Load→Small

Nonlinear Equation

ax = b a and b are changed by x

Iterative calculations are required.
Newton-Raphson method solves the equation.
Solution may not be acquired in some cases.

Calculation Load→Large

Nonlinear Magnetic Analysis

Murata Software

If the nonlinear calculation does not converge,

- 1. Check if a B-H curve is ragged due to the measurement error. Make correction to smooth the curve.
- 2. Go to [Analysis Condition Setting] > [High-Level Setting].
 - 2-1. Deselect [Adjust acceleration/deceleration coefficient automatically], Enter number smaller than 1, such as 0.5 or 0.1 in [Acceleration/Deceleration Coefficient].
 - 2-2. Increase the maximum number of iterations.

Analysis Condition Analysis	Nonlinear analysis setting
High-Level Setting Various Settings Nonlinear Analysis Setting Eigenvalue Calculation Setting	Convergence Judgment Setting Maximum Number of Iterations 100 • Acceleration/Deceleration Coefficient 1.0 ✓ Adjust acceleration/deceleration coefficient automatically Convergence Judgment 1.0 Image: Non-Weight Setting

Frequency Range for Calculation

Inductance in the Harmonic Analysis

Skin Effect

Conductor in the Harmonic Analysis

Frequency Range for Calculation Murata Software

Coil

Can be solved by magnetic analysis (Gauss).

Cannot be solved by magnetic field analysis (Gauss). Electromagnetic analysis (Hertz) is needed.

The minimum model size, which can be analyzed by the magnetic analysis (Gauss), is approx. 1/10 of a wavelength.

Inductance and Frequency

📄 Murata Software

The inductance changes depending on the frequency.

As the frequency goes higher, the inductance becomes smaller due to the skin effect.

Skin Effect

If the frequency increases, the magnetic field can only penetrate the surface of metal. It is called *skin effect*. Its penetration distance is called *skin depth*.

The skin depth is calculated by the equation below.

$$d = \sqrt{\frac{2}{\sigma\omega\mu}}$$

where:

 σ = Conductivity

 ω = Angular frequency of current=2 π f μ = Permeability

Section of Conductor Yellow area is where the magnetic field penetrates Ref: Skin depth of copper 1Hz 65mm

lkHz	2.1mm
lMHz	65µm
lGHz	2.1µm

*Strictly speaking, the skin depth is a distance where the penetrating magnetic field is attenuated to 1/e ($\Rightarrow 1/2.718 \Rightarrow -8.7$ dB).

C

The skin effect is a phenomenon generated by the eddy current.

Because of the skin effect;

-magnetic field in the gray area above is 0, which reduces the total magnetic field, and eventually reduces inductance.

-the sectional area for running current is reduces, which increases resistance leading to large loss.

Skin Mesh

The skin mesh is used to calculate the skin effect with less meshes and high accuracy. This function is available for harmonic and transient analysis.

Analysis Condition Analysis Analysis		
Mesh		
Meshing Setup	Adaptive Mesh/Multigrid	
✓ Use Mesher G2	Use the adaptive mesh method Setup	
Execute G1 when failed		
Set the general mesh size automatically	Use the multigrid method Setup	
General Mesh Size 2 [mm]	Frequency-Dependent Meshing	
Element Type	Bafaranca 5	
○ 1st-Order Element (Time Prioritized)	frequency 1 x10 [Hz]	
• 2nd-Order Element (Accuracy Prioritized)	Surface Treatment Type for Conductors (Thicker Than Skin Depth)	A
	• Create skin meshes	
Meshing control Setup	O Apply the surface impedance boundary	l l
	O Do nothing	The thin meshes are created automatically
Automatic Ambient Air Creation		on the conductor's surface.

Loss and Magnetic Field-Thermal Coupled Analysis

Loss

Magnetic Field-Thermal Coupled Analysis

Loss

The losses are:

Copper Loss: Joule loss of coil Iron Loss: Hysteresis loss+Joule loss of core (Induced current loss)

The loss is transformed to the thermal energy.

The induction heating (IH) utilizes the heat generated by the induced current loss.

Tab	le							
М	agnetic energy [J]	Q factor	Loss [W]	Po	ort current [A]	Imp	edance [ohm] P	°C
		Joule	loss [W]		Iron loss [W]		Total loss [W]	
Air_Auto Coil Coil_LoopAuto			0.000e	+0	0.0	00		
			4.256e	-4	0.00	00		
			4.256e	-4	0.00	00		
	Core		0.000e	+0	1.40	06		
	Whole		8.513e	-4	1.40	06	1.407	

調和解析の出力結果例

Magnetic Field-Thermal Coupled Analysis

Coupled with thermal analysis, the temperature distribution can be analyzed. The loss, which is acquired in the magnetic field analysis, is used as the heat amount.

Solver Selection	[Example: Inductance Heating]
Solver	
Mechanical Stress / Piezoelectric	
Stress Analysis	
Piezoelectric Analysis	
Acoustic / Fluid	
Aœustic Analysis	
Simple Fluid Analysis	Current Density Distribution
Fluid Analysis	
Thermal	
Thermal analysis	
Electric-Thermal Coupled Analysis	
Electromagnetic Field	
Electric Analysis	
Magnetic Analysis	
Electromagnetic Analysis	Temperature Distribution
All Rights Reserved	, Copyright ⓒ Murata Software Co., Ltd.

Murata Software

Magnetic Field-Thermal Coupled Analysis

Setting of the heat radiation path (boundary condition) is the most important point.

Boundary Conditions:

Murata Software

Temperature Heat Flux Thermal Resistance Thermal Conductivity Ambient Radiation Body-to-Body Radiation Adiabatic

Boundary Condition of Thermal Analysis

Boundary Condition of Thermal Analysis

Heat resistance set on the boundary of the bodies

[Example 15] The temperature changes discontinuously at the boundary of heat resistance

Murata Software

Boundary Condition of Thermal Analysis

•	Thermal	Thermal	
	Boundary Condition Type Thermal Temperature Heat Flux Thermal Heat Transfer/Ambient Body-to-Body Measuring Radiation Terminal Image: Construction of the second of the sec	Boundary Condition Type Temperature Heat Flux Thermal Resistance Heat Transfer/Ambient Body-to-Body Radiation Terminal	
	Room temperature (ambient temperature)	2Natural Convection	
	Types of Heat Transfer / Ambient Radiation	$\langle \zeta \rangle$	
1) ②	Forced convection 0 + Characteristic Air flow X10 [rm/s] Natural convection Natural convection (direction)	3 Ambient Radiation	
3	Ambient radiation Radiation rate	2	
,	(1)Forced Convection	A Contraction (4) Body-to-Body Radiation	

Murata Software

Boundary Condition of Thermal Analysis

Thermal	Heat Transfer and Ambient Radiation
Boundary Condition Type Thermal Time Dependency Weight Temperature Heat Flux Thermal Use distribution data Distrit Heat Transfer/Ambient Body-to-Body Measuring Use distribution data Distrit Adiabatic (no setting) Adiabatic (no setting) Distrit Use distribution data Distrit	Heat Transfer Coefficient Specify the coefficient (h).
Room temperature (ambient temperature)	 Forced Convection h is calculated by the wind speed and typical length. Natural Convection Specify the coefficient (con). Automatic calculation is possible. Ambient Radiation Specify the coefficient (rad) if the radiation target is in the infinity. Natural Natural Natural
	Forced Convection

Boundary Condition of Thermal Analysis

*1 If there is a big gap between the body-to-body boundary conditions, the temperature drops unnaturally. *2 If the distance to the radiation target is infinite, select [Ambient radiation].

🛑 Murata Software

Floating Capacitance

Floating capacitance of coil can be calculated by the electric analysis.

Procedure

- 1. Create an analysis model.
- 2. Select [Electric Field Analysis (Coulomb)].
- 3. Set analysis condition to harmonic analysis>conductor.
- 4. Set the magnetic wall of the outer boundary condition.
- 5. Create an air body.
- 6. Create a coil body. Set a voltage (1V) of the boundary condition to the whole peripheral of the coil.
- 7. Set the port of the boundary condition to the both ends of the coil. (Port1 and Port2)
- 8. Set the perfect conductor for the material property.
- 9. Run the solver.

[Example 17] Inductor's Floating Capacitance

Appendix

Examples

Analysis Condition

Electric Analysis Examples

🛑 Murata Software

Capacitance of the Capacitor

Resistance of the Conductor

Electrostatic Force on the Dielectric Material

Heat of the Signal Line

(Electric Field-Thermal Analysis)

Electric Analysis

Analysis Condition

A	Analysis Condition Setting				
	Solver	Electric Field Analysis			
	Electric Field An	Analysis Trans			
	Mesh	Analysis Type			
	External Magne	Static Analysis (Capacitance) Static Analysis (Resistance)			
	Open Boundary	Harmonic Analysis			
	High-Level Setti	Options			
	Result Import	Perform the plating analysis			
	Notes	Calculate the plating thickness			
		Perform the Hall element analysis			

🛑 Murata Software

Analysis Type

- Static Analysis
- Harmonic Analysis

Options

- Plating Analysis
- Hall Element Analysis

All Rights Reserved, Copyright © Murata Software Co., Ltd.

Electric Analysis Analysis Type

Static Analysis Frequency=0(direct current) Dielectric material: $-\varepsilon \nabla^2 \phi = \rho$ Conductive material: $-\sigma \nabla^2 \phi = 0$

is solved.

Harmonic Analysis

0<Frequency (alternating current)

 $\textbf{-} \nabla \textbf{-} (\sigma \textbf{+} j \omega \epsilon) \nabla \phi = j \omega \rho$

is solved.

Electric Analysis Plating Analysis

The current density, voltage distribution, and plating thickness are solved.

Electric Analysis Hall Element Analysis

Hall voltage and resistance are solved with hall effect taken into account.

Electric Conductivity

Conductivity Type	Anisotropy	Temperature
	Isotropic	No
		Yes
 Semiconductor 		
O Multilayer Electrod	e	
O Perfect Conductor		
Semiconductor	-4 🔺	
Hall 3.5 Coefficient	X10	[m3/C]
Hall Mobility 7.4	0 🔶 X10	[m2/V/sec]

2D Hall Element

Material Property Setting

Basic Equations in Harmonic Analysis

Maxwell Equations

$\nabla \times \mathbf{H} = \mathbf{J} + \delta \mathbf{D} / \delta \mathbf{t}$	(1)
$\nabla \times \mathbf{E} = - \delta \mathbf{B} / \delta t$	(2)
$\nabla \cdot \mathbf{D} = \mathbf{\rho}$	(3)
$\nabla \cdot \mathbf{B} = 0$	(4)

where

H: Magnetic field strength [A/m]
J: Current density [A/m²]
D: Current flux density [C/m²]
E: Electric field strength [V/m]
B: Magnetic flux density [T]
ρ: Charge density [C/m³]
J_e: Induced current density [A/m²]
Je is an unknown current generated by the Faraday's law.

In the equation (1), set $J = J_0 + J_e$, $\nabla \times H = (J_0 + J_e) + \delta D/\delta t$ $= (J_0 + \sigma E) + j\omega \epsilon E$ by approximating $j\omega \epsilon E = 0$, $\nabla \times H = J_0 + \sigma E$ $H = (1/\mu)$ $\nabla \times (1/\mu)B = J_0 + \sigma E$ (5) is given.

From the equation (4), the vector potential A is defined, which will give $B = \nabla \times A$ (6)

The scalar potential φ is defined by replacing the equation (2) in (6). $\nabla \times E = - \delta/\delta t (\nabla \times A)$ $\nabla \times (E + \delta A/\delta t) = 0$ $E = -\nabla \varphi - \delta A/\delta t$ (7)

By replacing the equations (6) and (7) in (5), $\nabla \times (1/\mu) \nabla \times A = J0 - \sigma (\nabla \phi + \delta A/\delta t)$ is given.

Calculation Method of Output Items

<Inductance>
Calculated by the interlinkage magnetic flux $L = \Phi / I$ Φ : Interlinkage Magnetic Flux
I: Coil Current

<Electromagnetic Force> Calculated by the nodal force method $F = -\int T \cdot \nabla N dV$ T: Maxwell Stress Tensor N: Interpolation Method

[Gauss], the solver of the magnetic analysis, is named after Carl Friedrich Gauss.

