Femtet Seminar

Magnetic Analysis

Exercise

Table of Contents

1. Make an analysis model of coil with core and solve inductance
2. (If time allows)

Make a quarter model and verify the results match those of the full model

Analysis Model

3D static analysis is performed on the model below.

Create Model

Create a core body.
 Command: Primitive \rightarrow Solid Body \rightarrow Cylinder

Center ($0,0,0$)
Radius (8)
Height (30)

Create Model

Create a cross-sectional body of the coil.

1. Select ZX plane for drawing

2. Command: Primitives \rightarrow Sheet Body \rightarrow Rectangle [Specify Length]]

Startpoint (9, 0, 5)
Width (20)
Height (3)

Create Model

Modify the cross-sectional body to make a revolving body Command: Modification Operation \rightarrow Revolve

Points on the revolving axis $(0,0,0)$
Directional vector of the revolving axis ($0,0,1$)
Revolving angle (360)

Create Model

Setting body attribute and material property of Coil

Create Model

Setting body attribute and material property of Core

Body Attribute/	Material Property Setting	-	$\square \times$
Body Attribute Name	Core		Edit Data
Material	Core	\checkmark	Edit Data
Material DB			

it Material Propert	Core]
Permeability	Permeability
Permeability for ... Electric Conducti... Notes	Material Type Soft Magnetic Material Permanent Solt Magnetic Material (with minor loop) Magnetization Characteristic Type Linear (Constant) B-H Curve Relative Permeability 5000 Anisotropy Isotropic Anisotropic

Create Model

Set the general mesh size of 2 mm in the analysis condition setting

All Rights Reserved, Copyright (C) Murata Software Co., Ltd.

Run Solver

Run Mesher/Solver

Show Results

Inductance

Magnetic Field Vector

Create Quarter Model

Select two bodies and cut to a quarter.
Command: Modification Operation \rightarrow Cut

Point on the cutting plane: Origin $(0,0,0)$
Normal vector of the cutting plane: $(-1,0,0)$
Select [Keep bodies in the positive normal direction only]

Point on the cutting plane: $\operatorname{Origin}(0,0,0)$
Normal vector of the cutting plane: $(0,1,0)$
Select [Keep bodies in the positive normal direction only]

Create Quarter Model

The model is not a loop coil. Set the current direction in the body attribute setting

Create Quarter Model

Set Reflective on the cutting plane

All Rights Reserved, Copyright © Murata Software Co., Ltd.

Results

Inductance

Table
Magnetic energy []] Inductance [H] Coupling coefficient| Electromagnetic Force [N] FEM Info|

Magnetic Field Vector

Type 4.0 as this is a quarter model.
The results mostly match those of the full model.

