

Femtet Seminar

Magnetic Analysis Exercise

202009

All Rights Reserved, Copyright © Murata Software Co., Ltd.

1

- 1. Make an analysis model of coil with core and solve inductance
- 2. (If time allows)
 - Make a quarter model and verify the results match those of the full model

3D static analysis is performed on the model below.

Create a core body. Command: Primitive → Solid Body → Cylinder

Center (0, 0, 0) Radius (8) Height (30)

Model's Maximum Dimension: 30 mm

Create a cross-sectional body of the coil.

1. Select ZX plane for drawing

2. Command: Primitives \rightarrow Sheet Body \rightarrow Rectangle [Specify Length]]

Modify the cross-sectional body to make a revolving body Command: Modification Operation \rightarrow Revolve

Points on the revolving axis (0, 0, 0) Directional vector of the revolving axis (0, 0, 1) Revolving angle (360)

Model's Maximum Dimension: 30 mm

Setting body attribute and material property of Coil

Body Attribute/Material Property Setting 📃 🛛 🗙			Edit Body Attribute [Coil]					
<u>B</u> ody Attribu Name <u>M</u> aterial	Coil ~ 008_Cu ~	Edit D <u>a</u> ta Edit D <u>a</u> ta	Thickness/Width	Current	Value			Direction
Material DB		Cancel	Direction Analysis Domain Notes	 DC AC (cos wave) User to Define External Circuit Coupling Coil Name on the Circuit 	Current	1 X10 0	[A]	Loop Coil/Magnetic Field Specify Inflow/Outflow Fa Specify Inflow/Outflow Fa *Inflow/outflow faces are Specify Boundary Conditiv Magnetic Field Vector X 0.0 Y 0.0
			- Coil	Options Distribute the current unifor (Consider to opt for it whe 1)		[•] turns is more than		Z <u>1.0</u>

Setting body attribute and material property of Core

Body Attribute	/Material Property Setting	— 🗆 ×	Edit Material Property	[Core]	
<u>B</u> ody Attribute Name <u>M</u> aterial	Core Core	Edit D <u>a</u> ta	Permeability Permeability for	Permeability	
Material DB	User DB 01_Fluid 02_Metal 03_Resin 04_Dielectric	Core	Electric Conducti Notes	Material Type Soft Magnetic Material Soft Magnetic Material (with minor loop) Magnetization Characteristic Type Linear (Constant) B-H Curve Relative Permeability 5000	rmanent Anisotropy Isotropic Anisotropic

Set the general mesh size of 2mm in the analysis condition setting

Solver	Mesh	
Magnetic Analysis	Mashing Catur	
Mesh	Meshing Setup	Adaptive Mesh/Multigrid
Wesh	✓ Use Mesher G2	Use the adaptive mesh method Setup
External Magneti	Execute G1 when failed	
Open Boundary	Set the general mesh size automatically	Use the multigrid method Setup
	General Mesh Size 2 [mm]	
Harmonic Analysis	Element Type	
Transient Analysis		
Torque Calculation	 1st-Order Element (Time Prioritized) 	
	Ind-Order Element (Accuracy Prioritized)	
Rotating Machin		
Fast Stabilizer	Meshing control Setup	
Calculation of M		
Calculation of Ivi	Automatic Ambient Air Creation	
Motor Characteri	✓ Create ambient air automatically	
High-Level Setting	Ambient Air Scale Model Length x 3.0	
Result Import	Set mesh size automatically	
	Mesh Size of Ambient Air 18.0	m]

Run Solver

Run Mesher/Solver

Calculation Finished							
Simulation Information The Number of Meshes Meshing Time Solving Time Total Time Memory Usage	on 16916 00:00:07 00:00:14 00:00:21 157[MB]	Warning No warnings	Warning Help				
Show Results							
✓ Fields							
<u>S</u> how <u>S</u> how							
			Close				

Show Results

Results

Murata Software

Create Quarter Model

Select two bodies and cut to a quarter. Command: Modification Operation \rightarrow Cut

Point on the cutting plane: Origin (0, 0, 0) Normal vector of the cutting plane: (-1, 0, 0) Select [Keep bodies in the positive normal direction only]

Point on the cutting plane: Origin(0, 0, 0) Normal vector of the cutting plane: (0, 1, 0) Select [Keep bodies in the positive normal direction only]

owered by Femtet tps://www.muratasoftware.com/en/

Model's Maximum Dimension: 30 mm

Create Quarter Model

🛑 Murata Software

The model is not a loop coil. Set the current direction in the body attribute setting

Create Quarter Model

Set Reflective on the cutting plane

		Electric	Symmetry/Cor	ntinuity	
		Symmetry/	Symmetry		
		Notes	Reflecti	ve	
			Periodic	:	
				inuous	
		\mathbf{N}			
Boundary Condi	ition ×	Boundary Condi	on	\times	
<u>B</u> oundary Condition	symmetry_y <u>E</u> dit Data	<u>B</u> oundary Condition	symmetry_x ~	<u>E</u> dit Data	
	Delete		<u>D</u> elete		
	OK Cancel		OK Cancel]	

Edit Boundary Condition [symmetry_x]

All Rights Reserved, Copyright © Murata Software Co., Ltd.

🛑 Murata Software

Results

Inductance Magnetic Field Vector Table kA/m Magnetic energy [J] Inductance [H] Coupling coefficient Electromagnetic Force [N] FEM Info -11.00Value(4time. Coil 1 5.48e-4 8.25 5,50 2.75 0.00 Maximum value: 9.634 Minimum value: 0.001 Magnetic Analy > 0: Static Analysis Adjustment 4 Display Options

Type 4.0 as this is a quarter model.

The results mostly match those of the full model.