

Femtet Seminar

Understanding Electromagnetic Analysis

202009

Overview Functions and Settings

Table of Contents

1. Overview

• Solver Type	ŀ
• Analysis Type 5)
• Harmonic Analysis ······ 6)
• Waveguide Analysis7	7
• Resonant Analysis 8	>
2. Functions and Settings	

3 Solvers of Electromagnetic Field ^{Murata Software}

nalysis Condition Sett	ling	
Solver	Solver	
Mesh High-Level Setti Result Import Notes	Mechanical Stress / Piezoelectric Mechanical stress analysis Piezoelectric analysis Acoustic / Fluid Acoustic analysis Simple fluid analysis	Galileo Rayleigh Mach Pascal
	Thermal Thermal analysis	Watt Curie
	Electromagnetic Field Electric field analysis Magnetic field analysis Electromagnetic waves analysis	Coulomb Gauss/Luvens Hertz

Solver Type	Frequencies to Solve
Electric Field	Constant (AC) current/voltage
Magnetic Field	Low frequencies ($\sim 1 \text{MHz}$)
Electromagnetic Wave	High frequencies (1MHz \sim 10's of GHz)

Electromagnetic Analysis

3 types of analysis are available.

Only sine wave can be used for input.

A time domain cannot be directly solved.

TDR analysis is possible by using the harmonic analysis results.

Solver	Electromagnetic Analysis		
Electromagnetic	Analysis Type		
Mesh	O Waveguide Analysis		
Open Boundary	Resonant Analysis		
Resonant Analysis	Harmonic Analysis		
Harmonic Analysis			

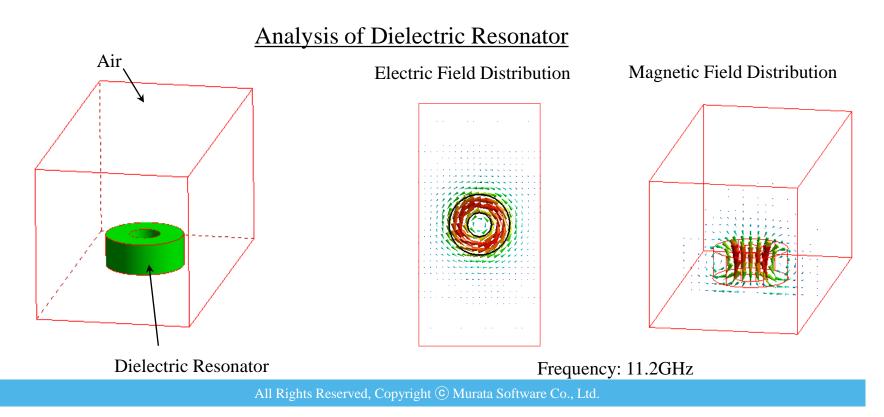
Waveguide (2D)	Resonant (Axisymmetric, 3D)	Harmonic (3D)
Transmission line	Resonance phenomena	Electromagnetic waves in space
Characteristic impedance	Resonant frequency	• S-parameters
Propagation constant	Resonant mode	• Directivity
• Propagation mode, etc	• Q, etc.	• Surrounding electromagnetic field
		• TDR, etc.

propagation frequency, propagation constant, propagation mode, characteristic impedance, and Q.

A section of the transmission line is analyzed to calculate:

Waveguide Analysis

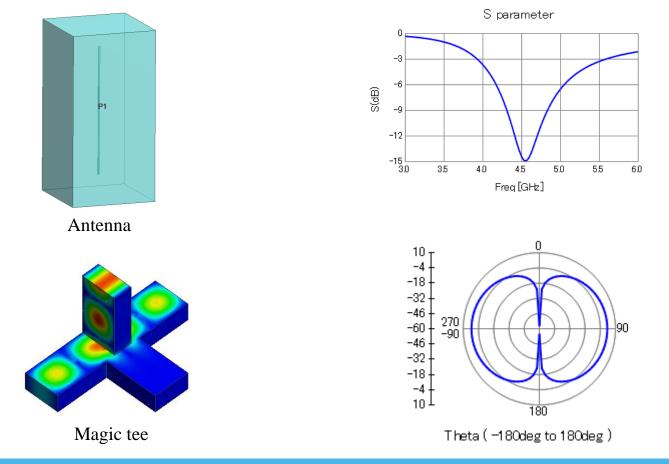
Coaxial Cable 2D Analysis Model of Section External Conductor Dielectric Material Internal Conductor Analysis model of the waveguide is 2D in Femtet



Resonant Analysis

The resonance is analyzed where the electromagnetic wave of only specific frequency is amplified. As a result, resonant mode, resonant frequency, and Q are acquired.

The port for the electromagnetic wave is not set up in this analysis. Impedance and S-parameters are not solved.



Harmonic Analysis

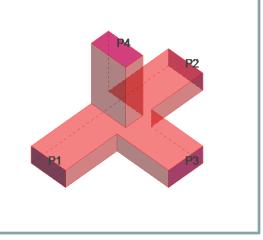
🌔 Murata Software

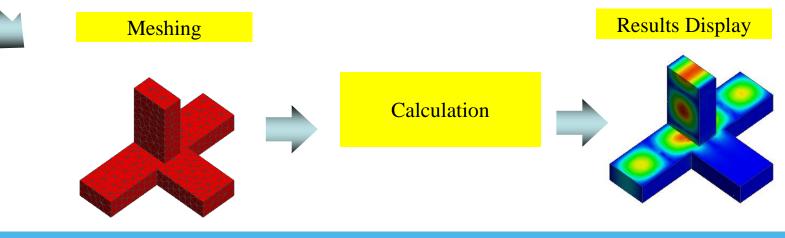
The propagation of the electromagnetic waves of certain frequencies is analyzed.

The electromagnetic fields, frequency characteristics, and radiation characteristics are acquired.

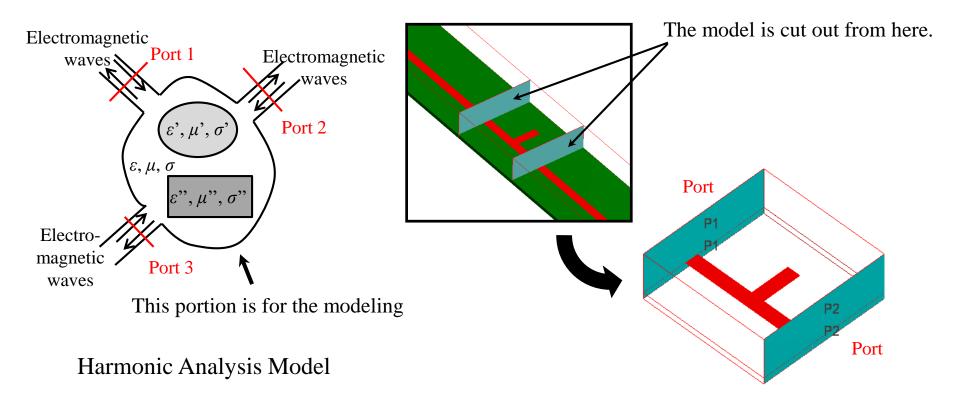
Table of Contents

1. Overview


2. Functions and Settings

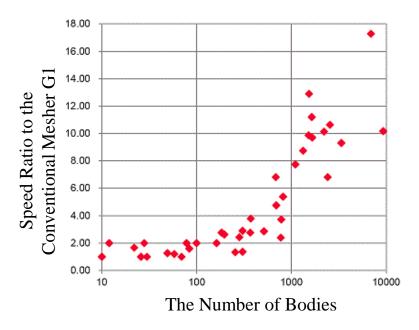

• General Flows	0
• Modeling 1	1
Analysis Condition Setting1	2
Material Property Setting1	7
• Boundary Condition Setting 1	8
• Results	1

General Flows


- 3D Model Creation
- Analysis Condition: Mesh size, Reference frequency, Analysis Frequency, etc.
- Body Attribute: Direction of anisotropic material
- Material Property: Relative permittivity, Relative permeability, Conductivity
- Boundary Condition: Port, Electric/Magnetic wall, Open boundary, Lumped constant, etc.

Modeling of Harmonic Analysis I Murata Software

- Discontinuous part of the structure and material are cut out for 3D model.
- Ports are set where the electromagnetic waves come in and out.


Analysis Condition: Mesher G2

🛑 Murata Software

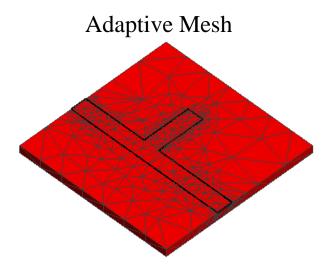
Mesher G2 realizes the fast calculation of the large model.

h siz e
[mm]

The meshing speed of Mesher G2 is more than 10 times the conventional mesher for the large analysis model.

Analysis Condition: Element Type

1st-Order and 2nd-Order Elements are available.


Analysis Condition Set	ting	Туре	Location of Unknown	Calculation Time	Accuracy
Solver	Mesh		<u>م</u>		
Electromagnetic Mesh Open Boundary Resonant Analy Harmonic Analy Waveguide Ana	Meshing Setup Use Mesher G2 Execute G1 when failed Automatically set the general mesh size General Mesh Size 0.52 [mm] Element Type	1 st Order		Short	Low
Incident Wave (High-Level Setti Result Import	 Ist-Order Element (Time Prioritized) 2nd-Order Element (Accuracy Prioritized) 	2 nd Order		è Long	High
	All Rights Reserved, Copyr	ight © Murata So	oftware Co., Ltd.		

Analysis Condition: Adaptive Mesh

Adaptive Mesh automatically creates the meshes suitable for the accurate calculation with short time.

Analysis Condition Setting				
Solver Electromagnetic	Adaptive Mesh/Multigrid			
Mesh	Use the multigrid method Setup			
Open Boundary	Frequency-Dependent Meshing			
Resonant Analysis	Reference 9 (Hz]			
Harmonic Analysis	\checkmark The conductor bodies thicker than the skin depth constitute the boundary condition.			
Waveguide Anal				
Incident Wave (P				

The mesh size is changed only where necessary. Thus, the increase of the number of meshes is abated and the calculation accuracy is increased.

*The meshes are optimized at the reference frequency.

Analysis Condition: Reference Frequency

On the [Mesh] tab, set the frequency of your interest.

Solver Electromagnetic Mesh Open Boundary Resonant Analysis Adaptive Mesh/Multigrid Image: Constraint of the strength of the
Mesh Use the multigrid method Setup Open Boundary Frequency-Dependent Meshing 9 Reference y10 9
Open Boundary Frequency-Dependent Meshing Resonant Analysis Reference
Frequency-Dependent Meshing Resonant Analysis Reference
Resonant Analysis Reference 9
Harmonic Analysis The conductor bodies thicker than the skin depth constitute the boundary condition.
Waveguide Anal
Incident Wave (P

The reference frequency is sometimes used for setting the Sparameters which is dependent on the frequency

*The material property of the frequency-dependent material is determined by the analysis frequency.

*Multiple reference frequencies can be selected.

Analysis Condition: Calculation Frequency

Calculation frequencies must be set for the harmonic analysis.

Calculation Frequency List		
No. Frequency		
1 1e+09	II	
2 1.005e+09	Harmonic Analysis	
3 1.01e+09		
4 1.015e+09		
5 1.02e+09	Frequency	
6 1.025e+09	riequency	
7 1.03e+09 8 1.035e+09	Sureen Turne	Sween Values
9 1.04e+09	Sweep Type	Sweep Values
10 1.045e+09	Linear Chan by Frequency	
11 1.05e+09	Linear Step by Frequency	Minimum frequency
12 1.055e+09		
13 1.06e+09	Linear Step by Division Number	1 x10 9 - [Hz]
14 1.065e+09		
15 1.07e+09	🔾 Log Step	
16 1.075e+09		Marian francisco de la companya de la compa
17 1.08e+09	◯ Single Frequency	Maximum frequency
18 1.085e+09		10 ×10 9 두 [Hz]
19 <u>1.09e+09</u>		10 x10 9 [Hz]
20 1.095e+09	🔿 Table	
21 1.1e+09		
22 <u>1.105e+09</u> 23 <u>1.11e+09</u>		Frequency step
	Check Frequency	5 x10 6 [Hz]

List of frequencies is displayed

Analysis Condition: Frequency Sweep

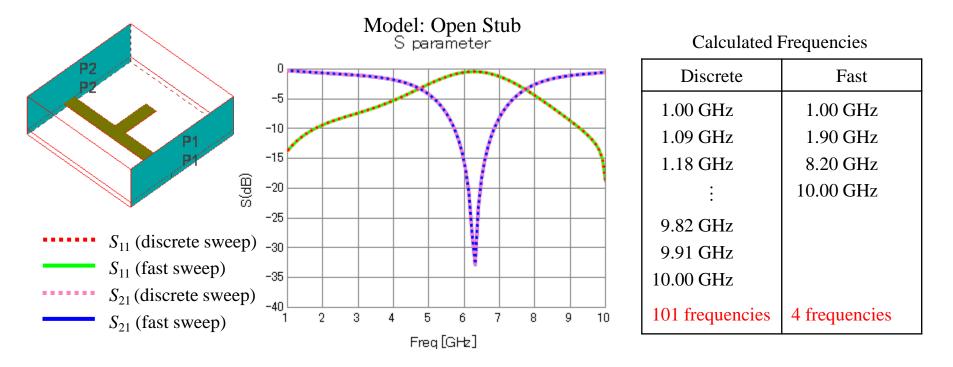
🌔 Murata Software

The calculation time and accuracy depend on the sweep method.

	Discrete Sweep	Parallel Discrete Sweep	Fast Sweep
Analysis Frequency	All	All	Partial
Calculation Time	Long	Short	Short
Accuracy	High	High	Low in some cases

Discrete Sweep calculates at all analysis frequencies. If the analysis frequencies are many, the calculation time is longer but the accuracy is high.

Parallel Discrete Sweep calculates at all analysis frequencies. By calculating multiple analysis frequencies simultaneously, the calculation time is shorter than the discrete sweep. The results with high accuracy is obtained.

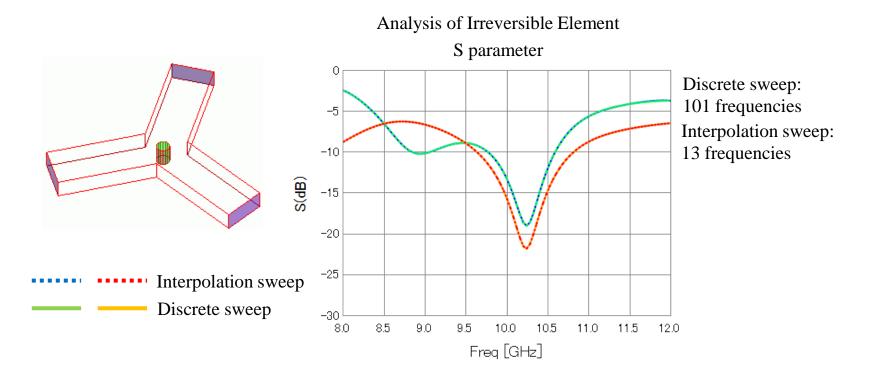

Fast Sweep/Interpolation Sweep assume the results of all analysis frequencies by calculating some of the frequencies. The results may not be so accurate depending on the model. Fast sweep assumes the field values as well. Interpolation sweep assumes S-parameters only.

*Option for the Accelerator is required to use the parallel discrete sweep

Analysis Condition: Fast Sweep

🛑 Murata Software

The fast sweep assumes the results of all analysis frequencies based on the results of some of the frequencies. Compared with the discrete sweep which calculates all analysis frequencies, the calculation time is shorter.



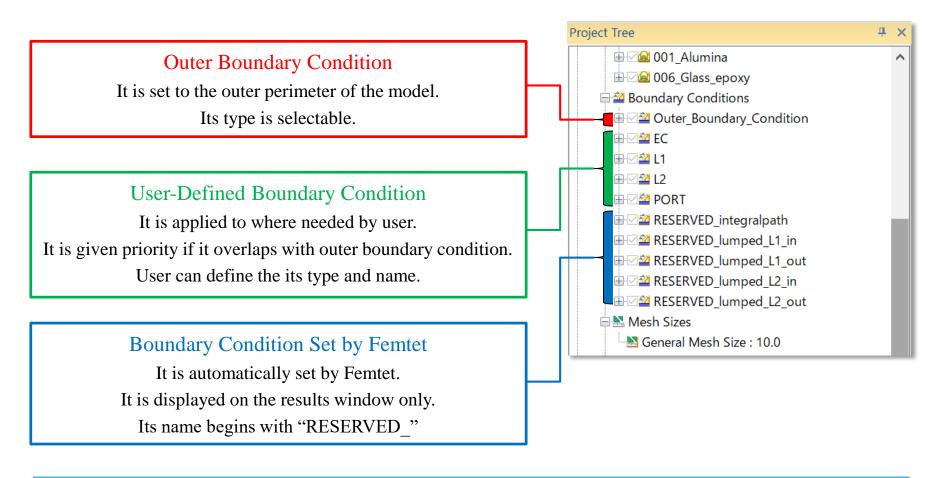
*If the fluctuation of the frequency characteristics is large or S-parameters are very small, the calculation time may be longer or the accuracy may be degraded.

Analysis Condition: Interpolation Sweep

The interpolation sweep assumes the results of all analysis frequencies based on the S-parameters of some of the frequencies. Unlike the fast sweep, it does not assume the field values.

*If the fluctuation of the frequency characteristics is large or S-parameters are very small, almost all of the frequencies may be calculated to assume the results.

Material Property


Permittivity, permeability, and electric conductivity are available for the material property

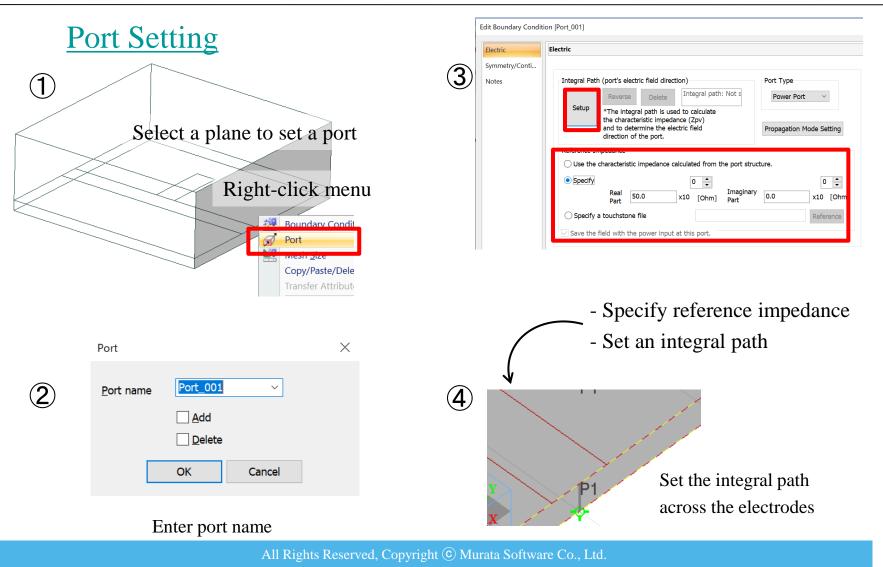
rmittivity	Permittivity		Edit Material Property	/ [Material_Property_001]				
Permeability Electric Conducti Notes	Anisotropy Fr		Permeability Material Type Electric Conducti Soft Magnetic Material Permane Edit Material Property		[Material_Property_001]			
	Anisotropic Relative Permittivi]		Soft Magnetic Material Use (with minor loop)	Anit	Permittivity Permeability Electric Conducti Notes	Electric Conductivity Conductivity Type Insulator Conductor Semiconductor Multilayer Electrode Perfect Conductor Electric Conductivity	Anisotropy Isotro Aniso

Boundary Condition

Classification of Boundary Conditions

Boundary Condition

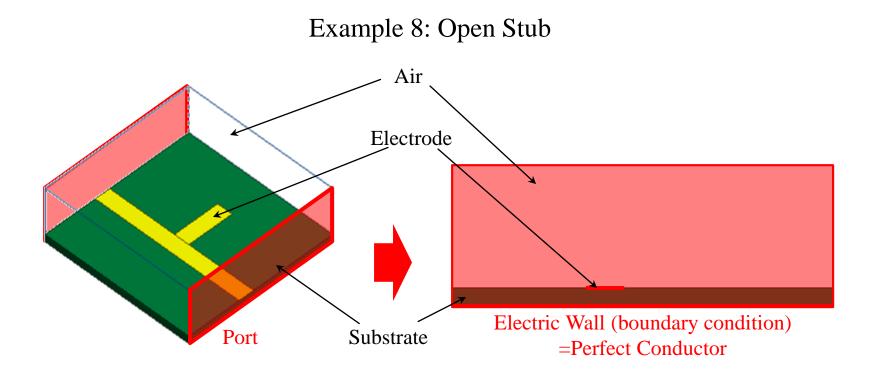
8 types of boundary conditions are available for the electromagnetic analysis.


Edi	t Boundary Condit	tion [Outer_Boundary_Conditi	on]		- Electric Wall
E	lectric	Electric			- Open Boundary
S	Symmetry/Conti Notes	Boundary Condition Ty	pe	- Magnetic Wall	
N		• Electric wall	○ Surface impedance	O Multilayer Electrode	- Port
		Open boundary	○ Port		- Lumped Constant
		O Magnetic wall	○ Integral path		- Multilayer Electrode
		O Plating wall	Lumped constant		- Surface Impedance

- Integral Path

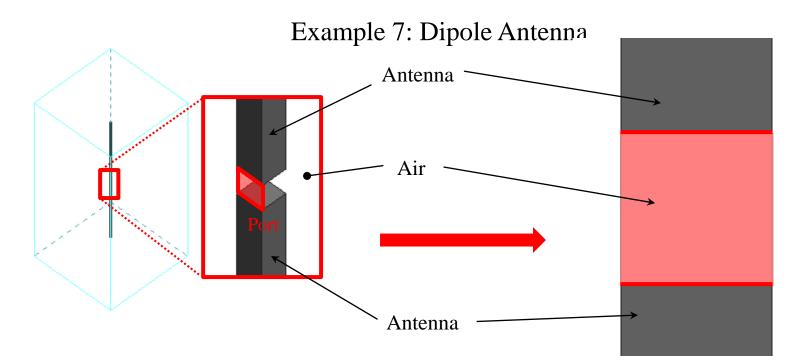
6 types of 8 conditions are often used. They are explained on the following pages.

Boundary Condition: Port (1 of 8)



Boundary Condition: Port (2 of 8)

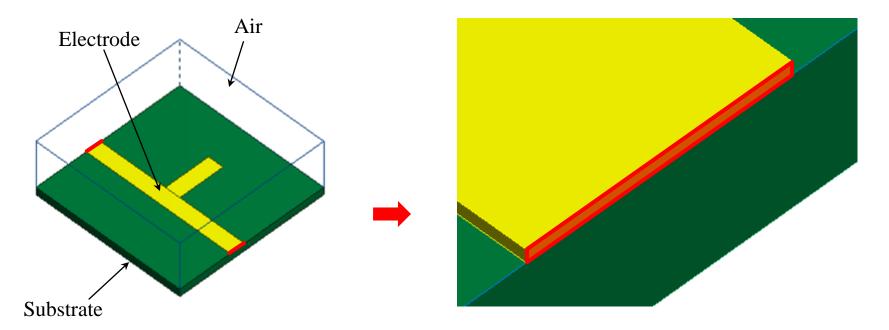
The port must be on the cross-section of the transmission line.



The face of the port is the structure of the microstrip line.

Boundary Condition: Port (3 of 8)

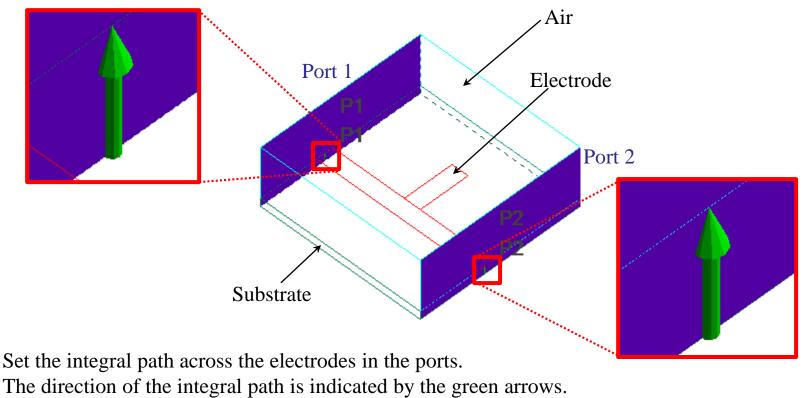
The port can be set inside the model.


The face of the port is the structure of the parallel signal lines.

Various ways of port setting is explained in the Examples.

Boundary Condition: Port (4 of 8)

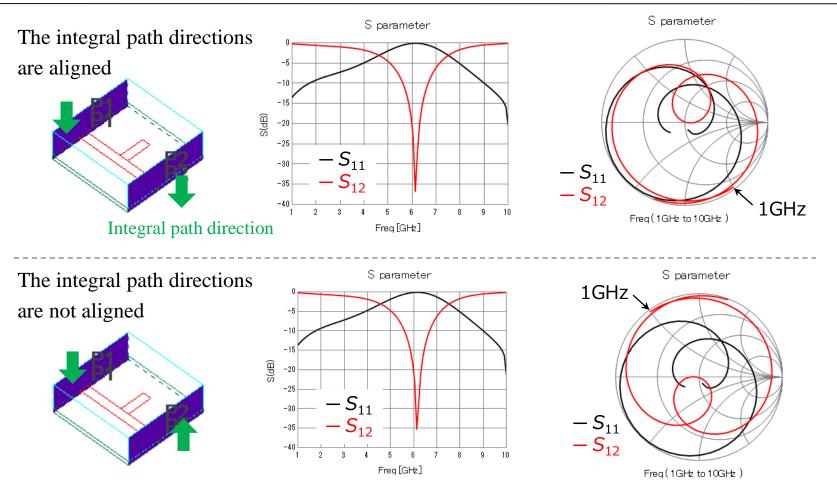
<u>A Typical Mistake of Setting</u> The port set to the section of conductor



The analysis cannot be executed properly as the electromagnetic waves do not transmit in the conductor.

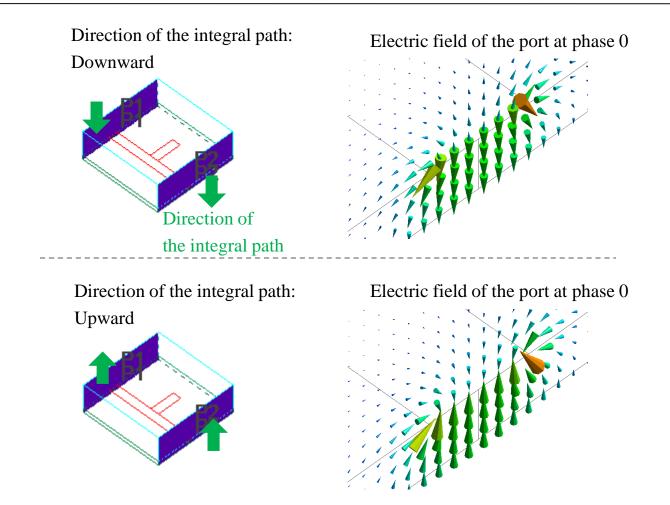
Boundary Condition: Port (5 of 8)

🛑 Murata Software


The integral path is necessary to calculate the characteristics impedance accurately. Its direction is the reference for the electric field direction.

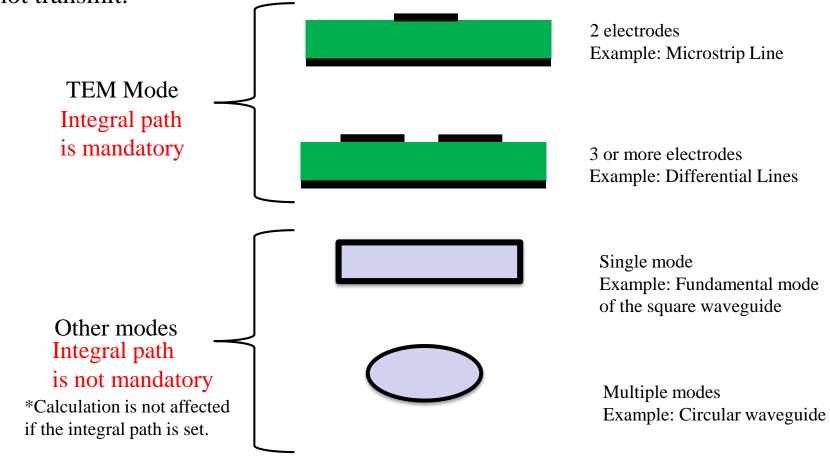
Unify the direction at all ports.

Boundary Condition: Port (6 of 8)



Phase of S_{12} shifts by 180 deg.

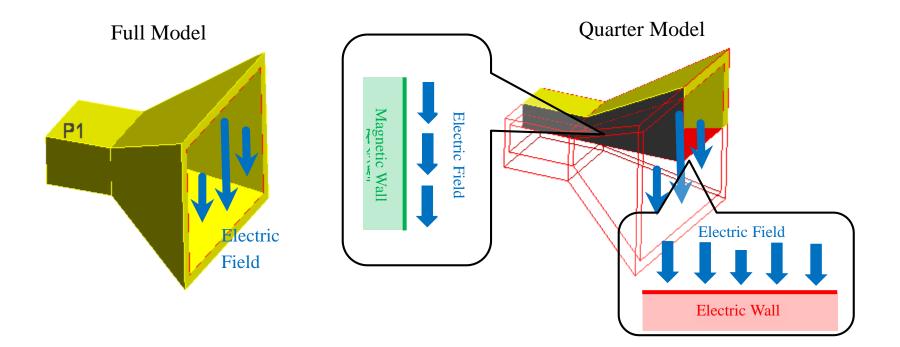
Boundary Condition: Port (7 of 8)



The direction of the electric field of the incoming electromagnetic wave at phase 0 is that of the integral path.

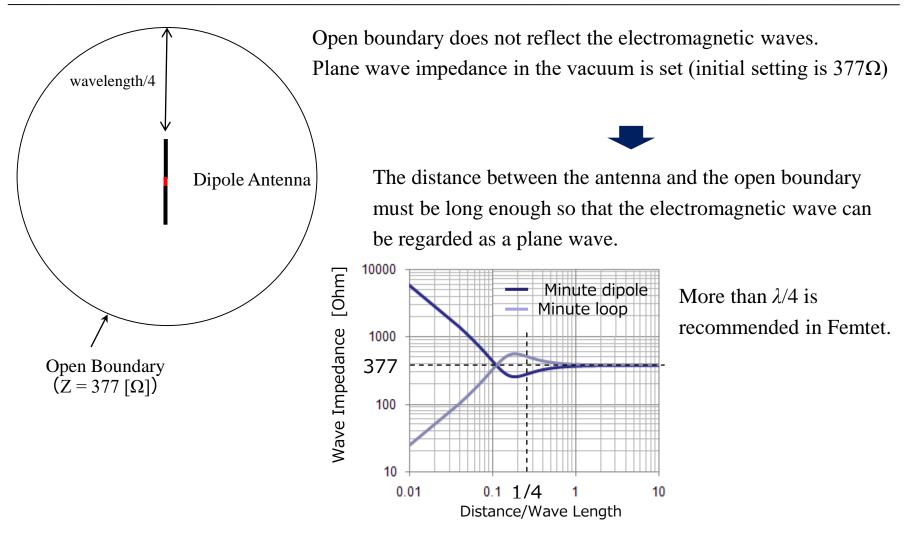
Boundary Condition: Port (8 of 8)

The integral path is not mandatory for the waveguide where TEM mode does not transmit.



) Murata Software

Boundary Condition: Electric / Magnetic Wall

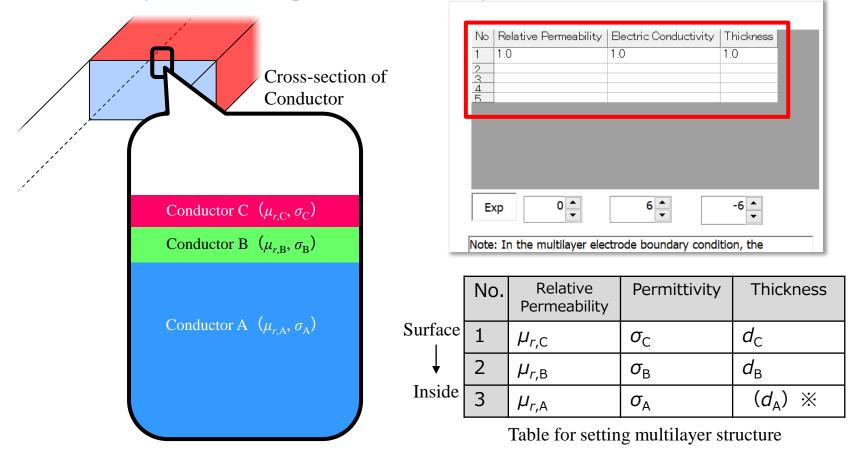


The magnetic field is parallel to the electric wall, and normal to the magnetic wall. The face of symmetry of the symmetric model can be represented. Also, the electric wall boundary condition can represent the analysis space surrounded by the conductor.

Boundary Condition: Open Boundary

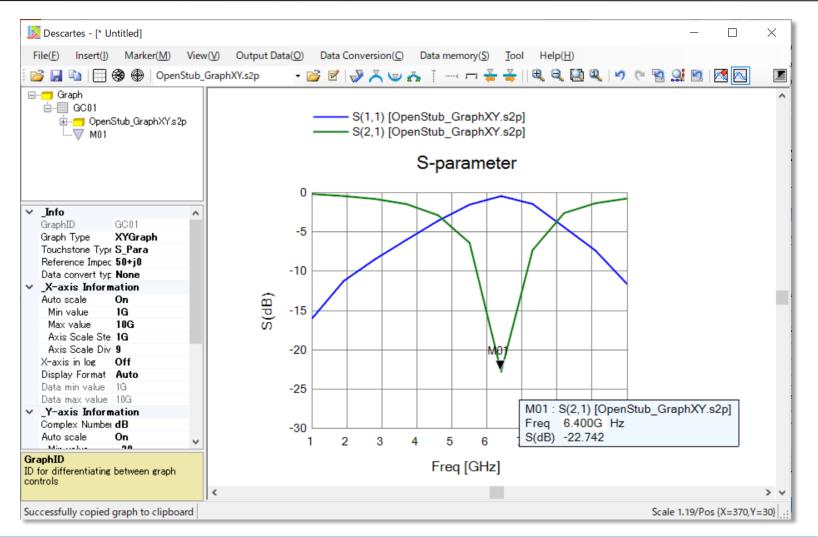
Boundary Condition: Lumped Constant

Loop Antenna	Edit Boundary Condit	ion [Boundary_Condition_001]]						
	Electric	Electric							
	Symmetry/Conti	Boundary Condition Typ	e						
	Notes	C Electric wall	○ Surface impedance	O Multilayer Electrode					
		Open boundary	○ Port	Electric Resistance					
		O Magnetic wall	◯ Integral path						
		O Plating wall	Lumped constant						
Port Lumped Constant				0					
		R I	Resistance	0 4 0.0 X10	[Ohm]				
			Inductance	-9 (0.0 X10	[H]				
			Capacitance	-12 4 0.0 X10	[F]				
Antenna			Set the frequ	ency with Touchstone file					
					Browse				
				[Help] regarding the limitation	of this function.				
			Search the part's info on mu	<u>irata.com</u> ,					


R, L, and C in series can be set with one lumped constant.

Lumped constant can be set to the sheet body only.

Boundary Condition: Multilayer Electrode

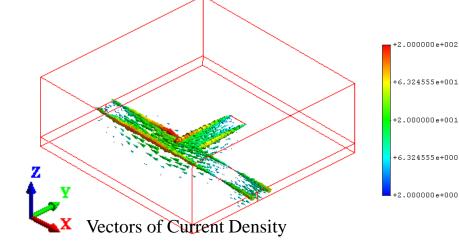

Multilayer electrode represents the multilayer conductive film.

*When calculating, the inner-most conductor's thickness is ignored assuming it is sufficiently thick.

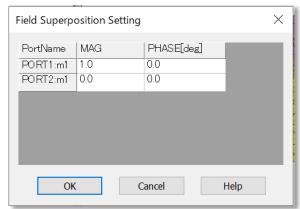
Results: Graph Display

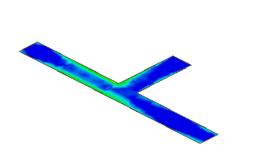
Results: Table Display

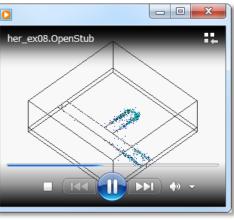
Numerical results are displayed on the table.


Table						×
FEM Info Characteristic impedance	Propagation constant (Zpi)[ohm]	Effective relative permittivity Reference impedance (Zref)[ohm	Wavelength [m]]	Characteristic impedance (Zpv)[ohr S-parameters	n]	
Real part	Imaginary p					
Port 1 PORT1:m						
Port 2 PORT2:m						
S(1,1) -0.12						
S(1,2) 0.63						
S(2,1) 0.63	6 -0.747					
S(2,2) -0.12	3 -0.101					
		Electromagneti ~ 0: 1.000000 GHz ~ [Display Options	Export		

In the harmonic analysis, propagation constant, characteristic impedance, reference impedance, and S-parameters are displayed.


Results: Field Display

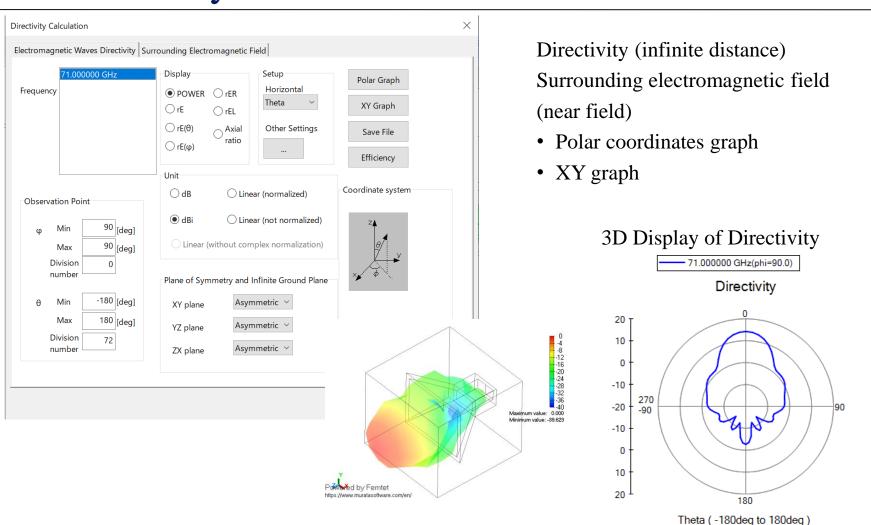

The electromagnetic fields are visually displayed in the Field.


- Vectors of electric field, magnetic field, and pointing vector
- Contour diagram of scalar of electric/magnetic energy density
- Field superposition
- Animation

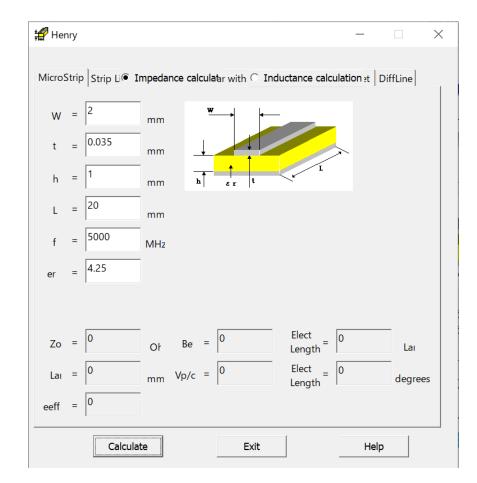
Field Superposition Setting

Contour diagram of surface current density

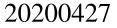
Animation


Results: SYZ Matrix

Edit (<u>H</u>) <u>V</u> iew <u> v</u> <u> v</u>				 Output of S, Y, Z matrix CSV file Touchstone file
Matrix Type S Z Y	File Output Contemporation Contemporation File Output Touchstone	Mag/Ang Real/Imag dB/Ang Output	Graph Output XY Graph Smith Chart Polar coordinates graph	Output to Graph XY graph Smith chart Polar coordinates graph Change reference impedance
Port Index Nu Port: Mo 1 PORT1:r 2 PORT2:r	m1		Matrix 1 1 1 2 2 1 2 2	(ReNoralization) Change port location (DeEmbedding)

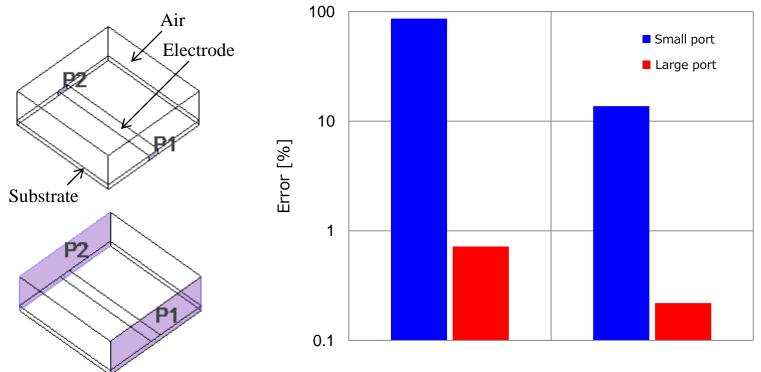

Results: Directivity

Impedance Calculation Tool



Start \Rightarrow Program \Rightarrow Femtet \Rightarrow Transmission line impedance calculation

Appendix



Appendix 1 Port Size

The port size affects the calculation.

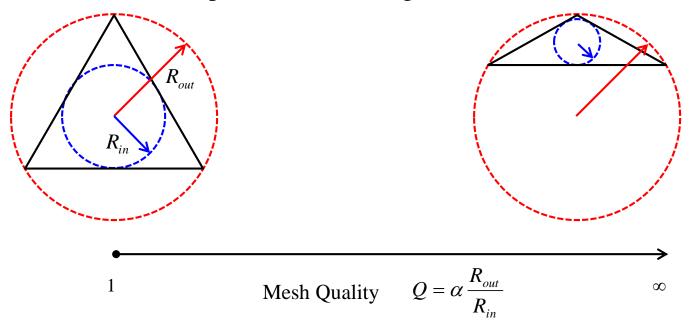
You can see that the accuracy is better if the port covers the entire crosssection of the air and the substrate.

※ Be aware that the calculation may fail if the port size is too large.

Appendix 2 Adaptive Mesh

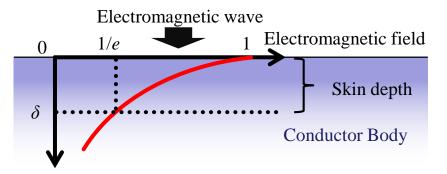
Adaptive meshing is performed on the ports first, then in the analysis domain.

Convergence status Adaptive	e mesł	ning compl	eted.							-		\times
The Number of Iterations		The n	The	Convergence j	Difference f	Absol	Calcu	Quality of				
The Number of		PORT1-1	72	Characteristic			00:0	•				
^{Cor} Meshing of		PORT1-2	96	Characteristic	0.04378	48.7	00:0	1.801				
^{Ma} "Port 002"	4	PORT1-3	126	Characteristic	0.02351	49.8	00:0	1.801				
FOIL 002		PORT1-4	166	Characteristic	0.01716	50.7	00:0	2.397				
Minimum 0		PORT1-5	218	Characteristic	0.00889	51.1	00:0	2.397				
		PORT2-1	72	Characteristic		46.5	00:0	2.172				
S-pa Meshing of		PORT2-2	96	Characteristic	0.04429	48.7	00:0	1.801				
'' $''$ $''$ $''$	-	PORT2-3	126	Characteristic	0.02388	49.9	00:0	1.801				
Tarc Port 001		PORT2-4	166	Characteristic	0.01715	50.7	00:0	1.801				
Current		PORT2-5	218	Characteristic	0.00795	51.1	00:0	2.397				
0.01019	7	1	4297	S-parameters			00:0	5.806				
Meshing of the	-	2	5398	S-parameters	0.05400		00:0	6.036				
analysis domain	Ľ	3	6815	S-parameters	0.01019		00:0	8.591				
Restart												
Abort		Display Type) List) Graph			Da	ta Output	<u>H</u> elp	D	<u>C</u> los	;e


*The parameters of convergence judgment converge to a certain value if the meshing is successful.

*Mesh quality is represented by the number of 1 or greater. If the number is closer to 1, the error is smaller.

Appendix 3 Mesh Quality


In the finite element method, the calculation accuracy tends to be higher if the element shape is closer to a regular tetrahedron.

The quality of mesh is evaluated by Q which is the ratio of radius of the inscribed sphere to that of the circumscribed sphere, multiplied by a factor α such that the quality of mesh becomes 1 when the element is a regular tetrahedron.

Appendix 4 Boundary Condition: Conductor Thicker than Skin Depth

*The skin depth δ is calculated by the reference frequency *If the conductor body is thinner than 2δ , the inside of the body is analyzed as well.

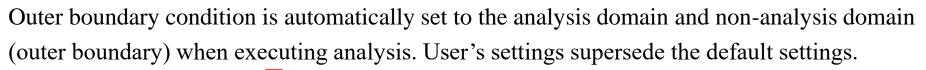
Distance from the surface

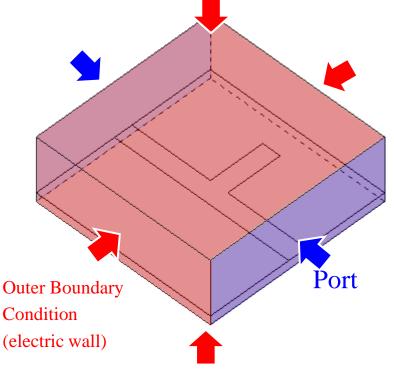
If the conductor body is thicker than 2δ

Boundary condition: Conductor body thicker than the skin depth
Surface impedance

The inside of the body is not analyzed.

- The electromagnetic field is zero
- Surface impedance is automatically set to the conductor surface and the loss can be taken into account


 $\hfill\square$ Boundary condition: Conductor body thicker than the skin depth


The inside of the body is analyzed as well.

- The electromagnetic field has value
- The accuracy depends on the mesh
- The calculation load is large

- The calculation load is small
- All Rights Reserved, Copyright © Murata Software Co., Ltd.

Appendix 5 Outer Boundary Condition

Though the faces of the ports too are outer boundary condition, the ports set by the user supersede them.

Project Tree						
🖽 🙆 Materials		~				
🖻 🚧 Boundary Conditions						
Alesh Sizes						
General Mesh Size : 2.0						

Murata Software

The type of the outer boundary condition can be changed on the project tree.

The default setting for Hertz is electric wall.