护 Murata Software

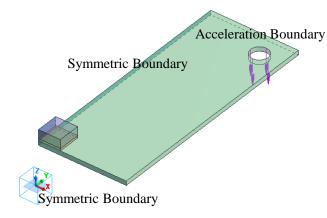
Q: Can Femtet analyze the impact test ?

A: Yes, Femtet can do it with the transient analysis of the stress solver.

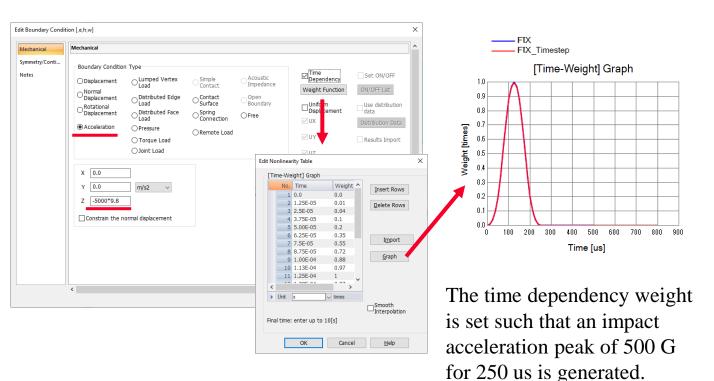
Acceleration boundary* is set for the analysis.

* It is different from [Acceleration] in [Options] in the [Analysis Condition Setting] dialog box.

muRata


Impact Test Analysis

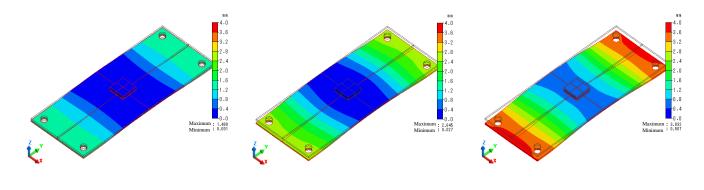
🕑 Murata Software


- The impact test applies impact acceleration for a very short term.
- Femtet can use the time-dependent acceleration boundary in the stress-transient analysis to perform the analysis with impact acceleration taken into account.
- This example uses a simple model where the impact acceleration above is set.

The model is a quarter-symmetric model of a substrate with a component mounted at the center. The symmetric face is set with a symmetric boundary condition (Fix). Acceleration boundary is set to the inner surface of the hole located at the corner of the substrate. See the next slides for more information.

Boundary Condition (Acceleration)

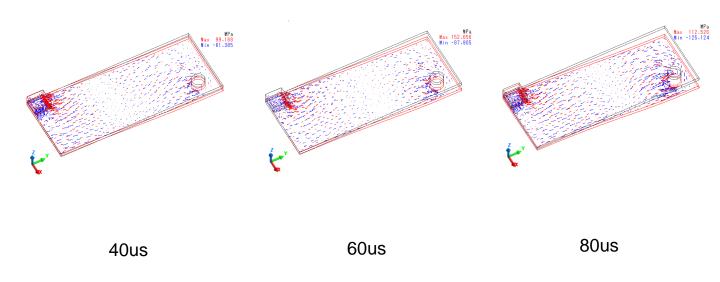
muRata Copyright © Murata Software Co., Ltd. All rights reserved.


🌒 Murata Software

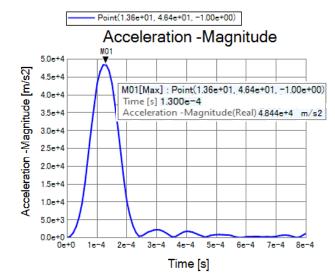
Analysis Condition (Stress-Transient Analysis)

Analysis Condition Se	etting		Analysis Condition Se	
Solver	Stress Analysis		Analysis Condition Se	
Stress Analysis	Analysis Type	2D Approximation	Solver	Transient Analysis
Mesh Resonant Analy	O Static Analysis	O Planar Strain	Stress Analysis Mesh	Timestep
Harmonic Analy	⊖Resonant Analysis	Plane Stress	Resonant Analy	Manual Continue from the last session Automatic
Transient Analysis	O Harmonic Analysis	Large Deformation	Harmonic Analy	
Step/Thermal Lo Acceleration	Transient Analysis	Large Strain	Transient Analysis Step/Thermal Lo	No. Calcula Output Timestep
Angular Velocity Constant Tempe	Options		Acceleration	1 80 1 10 2
High-Level Setti		Constant Te	Angular Velocity Constant Tempe	3 4
Results Import	Angular Velocity	Initial Stress (Results Import)	High-Level Setti	Unit
Notes	Constrain the freedom of shells		Results Import	Insert Rows Delete Rows Import
			Notes	<u>T</u> able

Timestep and calculation steps are set to 10us and 80, respectively. The total time is as follows. $80 \ge 10 = 800 = 800$


Results (Displacement + Z Displacement Contour) Murata Software

40us 60us 80us


The impact acceleration applied to the holes at the four corners causes deformation in the surrounding portions of the substrate. However, due to the low rigidity of the substrate, the part mounted in the center remains at its original position with less substrate deformation.

Result (Displacement + Principal Stress)

Large tensile stress is generated around the centrally mounted part in the longitudinal direction.

Acceleration at Acceleration Boundary

The graph indicates the peak acceleration is about 500 G.