Q: How to solve current and voltage?

A: Two methods are provided herein.
(1) Solve voltage and current using S-parameters.
(2) Integrating an electric field along an integral path yields a voltage.

Please refer to the next few slides.

Additional Information

(1) Solve current and voltage using S-parameters.

$$
\begin{array}{cl}
\binom{b_{1}}{b_{2}}=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\binom{a_{1}}{a_{2}} \\
a_{m}=\frac{v_{m i}}{\sqrt{Z_{r e f}}} & b_{m}=\frac{v_{m r}}{\sqrt{Z_{r e f}}} \\
v_{m}=v_{m i}+v_{m r} & i_{m}=\left(v_{m i}-v_{m r}\right) / Z_{r e f} \tag{3}
\end{array}
$$

where vm: Voltage at Port m, im: Current at Port m, vmi: Voltage of incident wave, vmr: Voltage of reflected wave, and Zref: Reference impedance.
The initial condition of the analysis result is an input power of 1 [W] from Port 1, which corresponds to $\mathrm{a} 1=0$ and $\mathrm{a} 2=0$ in equation (1).
The voltage and current at Port 1 are given as follows.

$$
\begin{gather*}
v_{1 i}=\sqrt{Z_{r e f}} \tag{4}\\
v_{1 r}=S_{11} \cdot \sqrt{Z_{r e f}} \tag{5}\\
v_{1}=v_{1 i}+v_{1 r}=\left(1+S_{11}\right) \sqrt{Z_{r e f}} \tag{6}\\
i_{1}=\left(1-S_{11}\right) / \sqrt{Z_{r e f}} \tag{7}
\end{gather*}
$$

Additional Information

(2) Integrating an electric field along an integral path yields a voltage.

On the [Results] tab, click the field and select [Electric Field] on the drop-down list. Then click the component and select [Absolute] on the drop-down list.
Select the edge of interest to select and execute [Integral] on the right-click menu.
The integration yields the amplitude of the voltage. $\left(\mathrm{V}=\int \mathrm{E} \cdot \mathrm{dl}\right)$
By applying the impedance, Z, that is obtained at Z_para in the result table to V=IZ, the current will be obtained. (Herein, the amplitude of the current will be obtained)

Please refer to Example 28 on the Femtet help menu below for more information. Home >Examples>Electromagnetic Analysis [Hertz] >Example 28: Coil-to-coil Power Transfer

