🌔 Murata Software

Q: How does Femtet specify the direction of materials?

A: The direction of materials is specified on the [Direction] tab in the [Edit Body Attribute] dialog box. In the piezoelectric analysis, it is specified by either vector or Euler angle.

Please refer to the Femtet help menu below for more information. Home>How to Set Body Attribute, Material Property, and Boundary Condition>Body Attribute Tabs>Direction Tab

Additional information is provided on the next slides.

- To specify the direction of materials, Femtet uses two types of specifying methods: [Vector] and [Euler Angle].
- If a material has one special axis and two other physically equal axes, [Vector] is recommended. If a material is a polarized polycrystalline material, [Vector] is better than [Euler Angle] for easy setting.
- If a material is single crystal material, [Euler Angle] is recommended.
- Be aware that the specifying methods of [Vector] and [Euler Angle] are different.

Specify by [Vector]

Specify a vector indicating the Z direction of a material.

Direction	
Specified by	
Vector	C
OEuler An	igle C
Z Vector	
X 0.0	
Y 0.0	
Z 1.0	

Specify by [Euler Angle]

Specify rotation angles of the coordinate system of a model based on or by fixing the coordinate system of a material.

Definition of Euler Angle

- By using Euler angles, one coordinate system can be transferred to another coordinate system. The transformation consists of three rotating operations.
- There are multiple methods to define Euler angles. Femtet uses a widely used z-x-z convention.
- Rotation Procedure in the Z-X-Z Convention
 - 1. Rotate (x, y, z) about z-axis by an angle of α , turning into (x', y', z').
 - 2. Rotate (x', y', z') about x'-axis by an angle of β , turning into (x", y", z").
 - 3. Rotate (x", y", z") about z"-axis by an angle of γ , turning into (X, Y, Z).

From Wikipedia

Definition of coordinate systems of material and model

- The coordinate system to determine anisotropic materials is defined as [Coordinate System of a Material]. In the material property dialog box of Femtet, the axis of materials is represented in (x, y, z).
- The coordinate system of the entire model is defined as [Coordinate System of a Model].

Example of material property (Elasticity)

With no rotation operation,

the coordinate system of a model will match with the coordinate system of a material.

[Coordinate System of a Model] and [Coordinate System of a Material]

- If the coordinate systems of a model and a material are different, the transformation between them is defined by Euler angle.
- Femtet defines Euler angle as the angle to rotate the coordinate system of a model based on the coordinate system of a model, not vice versa.

*It might seem that rotating the coordinate system of a material is easy to understand intuitively. But from the academic background, Euler angle has been defined as an angle to rotate the coordinate system of a model based on or by fixing the coordinate system of a material.

- Rotation of Coordinate System of a Model (Euler Angle)
 (1) Fix the coordinate system of a material (Reference)
 (2) Rotate the model
- In an internal calculation, the coordinate is transformed in such a way that the coordinate system of a material is rotated.
- (1) Fix the coordinate system of a model (Reference)
- (2) Rotate the coordinate system of a material

Explanation of Diagram

- Three lines, R, G, and B, represent the coordinate axes of a material, x, y, and z.
- Three arrows, R, G, and B, represent the coordinate axes of a model, X, Y, and Z.
- By using Euler angle, rotate the coordinate axes of a model, X, Y, and Z, based on or by fixing the coordinate axes of a material, x, y, and z.

护 Murata Software

Example: Ceramics polarized in the X direction

Explanation

- Suppose that ceramics is polarized in the X direction.
- With Euler angle, this operation indicates the X axis of a model, the red arrow, directs to the 3rd axis of a material, the blue line.
- This can be specified by a vector as (1, 0, 0) as well.

Euler angle	
$Z(\alpha)$	0
Χ'(β)	-90
Ζ''(γ)	-90

Example: Ceramics rotated by 30° about Y axis

Explanation

- Suppose that the 1st axis of a material is rotated by 30° about the Y-axis of a model.
- With Euler angle, the model is rotated by -30° about the 2nd axis, the green line, of a material
- This can be specified by a vector as $(\cos 30^\circ, 0, \sin 30^\circ)$ as well.

Euler angle	
$Z(\alpha)$	90
Χ'(β)	-30
Ζ''(γ)	-90

muRata Copyright © Murata Software Co., Ltd. All rights reserved.

Example: AT-Cut Quartz

- Euler angle if AT-cut quartz element is adhered on the XY plane.
- The X-axis, the red arrow, of a model matches with the 1st axis, the red line, of a material.

Reference: ST cut (X'=-48), CT cut (X'=-52), BT cut (X'=41), DT cut (X'=38)

Euler angle	
$Z(\alpha)$	0
Χ'(β)	-55
Ζ''(γ)	0

Example: AT-Cut Quartz

- Euler angle if AT-cut quartz element is adhered on the YZ plane.
- The Z-axis, the blue arrow, of a model matches with the 1st axis, the red line, of a material.
 Quartz

Euler angle	,
$Z(\alpha)$	90
Χ'(β)	90
Ζ''(γ)	35