Question 4

Q: How does Femtet specify the direction of materials?

A: The direction of materials is specified on the [Direction] tab in the [Edit Body Attribute] dialog box. In the piezoelectric analysis, it is specified by either vector or Euler angle.

Please refer to the Femtet help menu below for more information. Home >How to Set Body Attribute, Material Property, and Boundary Condition >Body Attribute Tabs >Direction Tab

Additional information is provided on the next slides.

■ To specify the direction of materials, Femtet uses two types of specifying methods: [Vector] and [Euler Angle].

- If a material has one special axis and two other physically equal axes, [Vector] is recommended. If a material is a polarized polycrystalline material, [Vector] is better than [Euler Angle] for easy setting.
■ If a material is single crystal material, [Euler Angle] is recommended.
- Be aware that the specifying methods of [Vector] and [Euler Angle] are different.

Specify by [Vector]

Specify a vector indicating the Z direction of a material.

Specify by [Euler Angle]

Specify rotation angles of the coordinate system of a model based on or by fixing the coordinate system of a material.

Direction	
Specified by	
OVector	Centripe (Radial)
O:Euler Angle	Circumfe

Definition of Euler Angle

- By using Euler angles, one coordinate system can be transferred to another coordinate system. The transformation consists of three rotating operations.
\square There are multiple methods to define Euler angles. Femtet uses a widely used $\mathrm{z}-\mathrm{x}-\mathrm{z}$ convention.

■ Rotation Procedure in the Z-X-Z Convention

From Wikipedia

1. Rotate (x, y, z) about z-axis by an angle of α, turning into ($x^{\prime}, y^{\prime}, z^{\prime}$).
2. Rotate ($x^{\prime}, y^{\prime}, z^{\prime}$) about $x^{\prime}-$ axis by an angle of β, turning into ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$).
3. Rotate ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) about $z^{\prime \prime}$-axis by an angle of γ, turning into (X, Y, Z).

Definition of coordinate systems of material and model

- The coordinate system to determine anisotropic materials is defined as [Coordinate System of a Material]. In the material property dialog box of Femtet, the axis of materials is represented in ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
■ The coordinate system of the entire model is defined as [Coordinate System of a Model].
Example of material property (Elasticity)

Elasticity matrix (compliance)						
xx	0.76	0.76		X10	-11	1/Pa
yy	-0.76					
zz	-0.17	-0.17	0.82			
yz	0	0	0	1.85		
zx	0	0	0	0	1.85	
xy	0	0	0	0	0	1.85
	xx	y	zz	yz	zx	xy

With no rotation operation, the coordinate system of a model will match with the coordinate system of a material.

[Coordinate System of a Model] and [Coordinate System of a Material]

■ If the coordinate systems of a model and a material are different, the transformation between them is defined by Euler angle.

- Femtet defines Euler angle as the angle to rotate the coordinate system of a model based on the coordinate system of a model, not vice versa.
*It might seem that rotating the coordinate system of a material is easy to understand intuitively. But from the academic background, Euler angle has been defined as an angle to rotate the coordinate system of a model based on or by fixing the coordinate system of a material.

■ Rotation of Coordinate System of a Model (Euler Angle)
(1) Fix the coordinate system of a material (Reference)
(2) Rotate the model

■ In an internal calculation, the coordinate is transformed

in such a way that the coordinate system of a material is rotated.
(1) Fix the coordinate system of a model (Reference)
(2) Rotate the coordinate system of a material

Explanation of Diagram

- Three lines, R, G, and B, represent the coordinate axes of a material, x, y, and z .

■ Three arrows, R, G, and B, represent the coordinate axes of a model, X, Y, and Z.
■ By using Euler angle, rotate the coordinate axes of a model, X, Y, and Z, based on or by fixing the coordinate axes of a material, x, y, and z .

Example: Ceramics polarized in the X direction

Explanation

- Suppose that ceramics is polarized in the X direction.
- With Euler angle, this operation indicates the X axis of a model, the red arrow, directs to the $3^{\text {rd }}$ axis of a material, the blue line.

Euler angle	
$Z(\alpha)$	0
$X^{\prime}(\beta)$	-90
$Z^{\prime \prime}(\gamma)$	-90

■ This can be specified by a vector as $(1,0,0)$ as well.

Example: Ceramics rotated by 30° about Y axis

Explanation

- Suppose that the $1^{\text {st }}$ axis of a material is rotated by 30° about the Y-axis of a model.
- With Euler angle, the model is rotated by -30° about the $2^{\text {nd }}$ axis,

Euler angle	
$Z(\alpha)$	90
$X^{\prime}(\beta)$	-30
$Z^{\prime}(\gamma)$	-90

- This can be specified by a vector as $\left(\cos 30^{\circ}, 0, \sin 30^{\circ}\right)$ as well.

Example: AT-Cut Quartz

■ Euler angle if AT-cut quartz element is adhered on the XY plane.
■ The X-axis, the red arrow, of a model matches with the $1^{\text {st }}$ axis, the red line, of a material.

Euler angle	
$Z(\alpha)$	0
$X^{\prime}(\beta)$	-55
$Z^{\prime}(\gamma)$	0

Reference: ST cut ($X^{\prime}=-48$), CT cut $\left(X^{\prime}=-52\right)$, BT cut $\left(X^{\prime}=41\right)$, DT cut $\left(X^{\prime}=38\right)$

Quartz
Cutting angle

Example: AT-Cut Quartz

- Euler angle if AT-cut quartz element is adhered on the YZ plane.

Euler angle	
$Z(\alpha)$	90
$X^{\prime}(\beta)$	90
$Z^{\prime}{ }^{\prime}(\gamma)$	35

■ The Z-axis, the blue arrow, of a model matches with the $1^{\text {st }}$ axis, the red line, of a material.

Quartz
Cutting angle

