🌔 Murata Software

Q: How to set temperature coefficients for temperaturedependent materials?

A: There are two methods available:

- Representing elements of the elasticity matrix with a cubic formula in temperature using variables.
- Representing coefficients of linear thermal expansion with a cubic formula in temperature and entering the calculated values into a table.

Please refer to the next slides.

Additional Information

🌓 Murata Software

Temperature-Dependent Elasticity Property

Described below is how to enter elements of the elasticity matrix where those elements are represented by a cubic formula in temperature, shown as formula (1).

$$c_{ij}(T) = c_{ij}(T0) \left[1 + c_{ij_{-}1}(T - T0) + c_{ij_{-}2}(T - T0)^2 + c_{ij_{-}3}(T - T0)^3 \right]$$
(1)

where

 $c_{ij_{-1}}, c_{ij_{-2}}, c_{ij_{-3}}$: First, second, and third degree coefficients for each element of the elasticity matrix. T0: The reference temperature where those coefficients are determined.

ticity								
Mate	erial Type	•		Те	Temperature Dependency No Yes 			
0	Elastic/Is	otropic		(
	Elastic/A	nisotropic						
-		astic/Biline	ər	Ela	Elasticity Matrix Type			
-	-			(Stiffness			
0	Elasto-pla	astic/Multil	inear	0	Compliance			
Elast	icity Mat	rix (stiffne	ss)					
xx			٦		12 🚔			
XX YY ZZ				X10		Pa]		
уу	0.0	0.0	0.0			'a]		
уу zz	0.0	0.0	0.0			'a]		
yy zz yz				X10		Pa]		

The elasticity matrix, or stiffness matrix, of Femtet can not define temperature dependence. Input the values calculated by the formula (1) into the elasticity matrix.

The variable function of Femtet allows you to change and check the values of the variables through the variable table.

Additional Information

How to input temperature coefficients of materials

 \times

📄 🔜 Mesh Sizes		
General	Mesh Size : 0.06	
🗄 🛛 🗶 Variables		
🖨 👿 Results 🛑	New Variables	
🛅 Calc	Edit	
🖨 📑 Field	Delete	
	List Variables	
Tabl	Apply Edit	
tavorites €	Apply Edit Automatically	
Common DBs	Highlight History	
*	Parametric Analysis	
Variables		
<u>V</u> ariable Name <u>C</u>	Content	
temp =	85	
Comp.	<u></u>	

Wariables	
e. Result	New Variables
	Edit
🖨 🔂 Fie	Delete
	List Variables

Cancel

OK

Click on [Variable] and select [New Variables] on the right-click menu.

Input the variable name and the content: a value or expression. The variables defined before are available.

[List Variables] is selected to display the list. The values and expressions can be modified.

Input Example: Temperature-Dependent Elasticity Matrix

$$c_{ij}(T) = c_{ij}(T0) \left[1 + c_{ij_{-1}}(T - T0) + c_{ij_{-2}}(T - T0)^2 + c_{ij_{-3}}(T - T0)^3 \right]$$
(1)

Setting of c11 and c12

temp = Reached temperature

temp0 = Reference temperature (the reference temperature not for the analysis but for determining the coefficients)

dt = temp - temp0

```
c11 = c11_0^{(1.0+c11_1^{dt}+c11_2^{dt}+dt+c11_3^{dt}+dt^{dt})}
```

 $c12 = c12_0^{(1.0+c12_1^{dt}+c12_2^{dt}+dt+c12_3^{dt}+dt^{dt})}$

Elasticity											
Mat	terial Type			Те	mperature	e Dependen	cy				
С	○ Elastic/Isotropic				No			Va	riables Table		- 0
Elastic/Anisotropic				O Yes				Variable name	Value	Expression	
			Ela	Elasticity Matrix Type				temp0	50.0	50	
C	○ Elasto-plastic/Bilinear								temp	85.0	85
0	O Elasto-plastic/Multilinear			Stiffness Compliance				dt	35.0	temp-temp0	
C			0					c11_0	0.8605	0.8605	
	Compile) compila				c11_1	-0.0000485	-48.5e-6
Elas	Elasticity Matrix (stiffness)							c11_2	-0.000000075	-75e-9	
							c11_3	-0.000000000	-15e-12		
XX C11							c12_0	0.0505	0.0505		
yy C12					11 ≑				c12_1	-0.002703	-2703e-6
ZZ		1	·	X10	X10 [Pa]				c12_2	-0.0000015	-1500e-9
			<u> </u>		1				c12_3	0.0000000191	1910e-12
yz	Z 0.0	0.0	0.0			-			c11	0.8589596894	c11_0*(1.0+c11_1*dt+c11_2*dt*dt+c11_3*dt*dt*dt)
ZX	0.0	0.0	0.0	0.0					c12	0.0456337892	c12_0*(1.0+c12_1*dt+c12_2*dt*dt+c12_3*dt*dt*dt)
Xy	0.0	0.0	0.0	0.0	0.0						
	хх	уу	ZZ	yz	ZX	ху					

muRata Copyright © Murata Software Co., Ltd. All rights reserved.

Temperature-Dependent Coefficient of Linear Thermal Expansion

Described below is how to calculate the coefficient of linear thermal expansion where strains are represented by a cubic formula in temperature, shown as formula (1).

$$(L_1 - L_0) / L_0 = \beta_1 (\theta_1 - \theta_0) + \beta_2 (\theta_1 - \theta_0)^2 + \beta_3 (\theta_1 - \theta_0)^3$$
(1)

where

 L_0 , L_1 : length at θ_1 and θ_2 , respectively.

The coefficient of linear thermal expansion, α , is represented by a quadratic formula.

$$\alpha = \alpha_1 + \alpha_2(\theta - \theta_0) + \alpha_3(\theta - \theta_0)^2$$
⁽²⁾

The relationship between L_0 and L_1 is determined as shown below.

$$(L_{1} - L_{0})/L_{0} = \int_{\theta_{0}}^{\theta_{1}} \alpha d\theta$$

= $\int_{\theta_{0}}^{\theta_{1}} [\alpha_{1} + \alpha_{2}(\theta - \theta_{0}) + \alpha_{3}(\theta - \theta_{0})^{2}]d\theta$
= $\alpha_{1}(\theta_{1} - \theta_{0}) + \frac{1}{2}\alpha_{2}(\theta_{1} - \theta_{0})^{2} + \frac{1}{3}\alpha_{3}(\theta_{1} - \theta_{0})^{3}$ (3)

Formulas (1) and (2) give the following formula.

$$\alpha_1 = \beta_1, \alpha_2 = 2\beta_2, \alpha_3 = 3\beta_3 \tag{4}$$

How to Set the Coefficient of Linear Thermal Expansion

Where $\beta_1 = \beta_2 = \beta_3 = 10^{-6}$ and $\theta_1 = 10^{\circ}$ C, $\theta_1 = 20^{\circ}$ C are given,

Formula (4) gives the coefficient of linear thermal expansion, α , as shown below.

🛑 Murata Software

Results

