

質問 材料の温度係数の入力方法は?

回答 弾性行列成分が温度の3次式で表現される場合の入力方法(変数を用い る方法)や線膨張係数が温度の3次式で表現される場合の入力方法(温 度テーブルの設定)が用意されている(次スライド以降参照)

muRata Copyright © Murata Software Co., Ltd. All rights reserved.

補足

Murata Software

温度依存の弾性定数

式(1)のように弾性行列成分が温度の3次式で表現される場合の入力方法を示す $c_{ij}(T) = c_{ij}(T0) \Big[1 + c_{ij_1}(T - T0) + c_{ij_2}(T - T0)^2 + c_{ij_3}(T - T0)^3 \Big]$ (1)

ここで、 $c_{ij_1}, c_{ij_2}, c_{ij_3}$ は各弾性定数成分の1次、2次、3次の温度係数であり、 T0はその温度係数が定義されている基準温度である。

Femtetの弾性定数(スティフネス行列)では 温度依存を定義することができないため、 上記の式(1)を用いて算出された弾性定数を 入力欄へ入力する。 Femtetの変数機能を用いると後で数値の変更 や確認を一覧表を通じて行うことができる。

材料の温度係数の入力方法

変数で右クリックして新規変数を選択

変数名と定義式を入力する 定義式は既に定義した変数を使用できる

変数一覧を選択すると一覧表が出力されて 現在の値や定義式を一覧参照できる。 値や定義式の変更も可能。

補足

Durata Software

温度依存の弾性行列の入力例

$$c_{ij}(T) = c_{ij}(T0) \left[1 + c_{ij_{-1}}(T - T0) + c_{ij_{-2}}(T - T0)^2 + c_{ij_{-3}}(T - T0)^3 \right]$$
(1)

c11とc12の設定例

temp = 到達温度を設定 temp0 = 基準温度(熱荷重解析の基準温度ではなく係数を決定している基準温度) dt = temp - temp0 c11 = c11_0*(1.0+c11_1*dt+c11_2*dt*dt+c11_3*dt*dt*dt) c12 = c12_0*(1.0+c12_1*dt+c12_2*dt*dt+c12_3*dt*dt*dt)

弹性定数									変数テーブル			
「材料の種類」									_			
	0	○弾性 - 等方性 ●弾性 - 異方性							変数名	値	式	
					○ あり					temp0	50.0	50
	0				弾性定数行列の指定方法					temp	85.0	85
	0.	0 y+±11/1/2/			● スティフネス				dt	35.0	temp-temp0	
	0	単塑性マル	マルチリニア		Oコンプライアンス					c11_0	0.8605	0.8605
										c11_1	-0.0000485	-48.5e-6
	5里性)	官数 <mark>(</mark> スティ	フネス)ドテタ ¬	IJ	11					c11_2	-0.00000075	-75e-9
	1	c11								c11_3	-0.00000000015	-15e-12
	2	c12	1		X10 [Pa]					c12_0	0.0505	0.0505
	3									c12_1	-0.002703	-2703e-6
	4	0.0	0.0	0.0						c12_2	-0.0000015	-1500e-9
	5	0.0	0.0	0.0	0.0					c12_3	0.0000000191	1910e-12
	6	0.0	0.0	0.0	0.0	0.0				c11	0.85895968940344	c11_0*(1.0+c11_1*dt+c11_2*dt*dt+c11_3*dt*dt*dt)
		1	2	3	4	5	6			c12	0.04563378925813	c12_0*(1.0+c12_1*dt+c12_2*dt*dt+c12_3*dt*dt*dt)

🛑 Murata Software

温度依存の線膨張係数

式(1)のように歪が温度の3次式で表現される場合の計算方法を示す

$$(L_1 - L_0) / L_0 = \beta_1 (\theta_1 - \theta_0) + \beta_2 (\theta_1 - \theta_0)^2 + \beta_3 (\theta_1 - \theta_0)^3$$
(1)

ここで、 L_0 , L_1 は温度が θ_1 , θ_2 の時の長さである。 線膨張係数 α を、次式のように温度の2次式で定義する

$$\alpha = \alpha_1 + \alpha_2 (\theta - \theta_0) + \alpha_3 (\theta - \theta_0)^2$$
⁽²⁾

この時、 L_0, L_1 の関係は次式で求まる

$$(L_{1} - L_{0})/L_{0} = \int_{\theta_{0}}^{\theta_{1}} \alpha d\theta$$

= $\int_{\theta_{0}}^{\theta_{1}} [\alpha_{1} + \alpha_{2}(\theta - \theta_{0}) + \alpha_{3}(\theta - \theta_{0})^{2}] d\theta$
= $\alpha_{1}(\theta_{1} - \theta_{0}) + \frac{1}{2}\alpha_{2}(\theta_{1} - \theta_{0})^{2} + \frac{1}{3}\alpha_{3}(\theta_{1} - \theta_{0})^{3}$ (3)

式(1)(3)より下式の関係式が得られる

$$\alpha_1 = \beta_1, \alpha_2 = 2\beta_2, \alpha_3 = 3\beta_3 \tag{4}$$

線膨張係数の定義

数値例として、 $\beta_1 = \beta_2 = \beta_3 = 10^{-6}$ 、 $\theta_1 = 10^{\circ}$ C、 $\theta_1 = 20^{\circ}$ Cとする 式(4)から膨張係数αは次式になる $\alpha = [1 + 2(\theta - \theta_0) + 3(\theta - \theta_0)^2] \times 10^{-6}$ 適当な間隔で数値で入力 線膨張係数 弾性定数 説明 温度依存性 異方性 非線形テーブルの編集 ()な| ●等方 あり 〇異方 温度 10 線膨張係数 行の挿入Ѻ 2 11 行の削除(<u>D</u>) 12 非線形テーブルで 13 34 57 データを設定して下さい 14 参照(R) 15 86 16 121 162 9 18 209 グラフ(<u>G</u>) 0 19 262 1 20 321 指数 0 -6 \$ ▶ 滑らかに補間 [deg] 単位 [1/deg] OK OK キャンセル ヘルブ(日)

計算結果

